Skip to main content

Lib for NebulaGraph integration with Deep Graph Library (DGL).

Project description

nebula-dgl

pdm-managed License

nebula-dgl is the Lib for Nebula Graph integration with Deep Graph Library (DGL).

nebula-dgl is still WIP, there is a demo project here .

Guide

Installation

Install from PyPi

python3 -m pip install nebula-dgl
python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html

Install from codebase for dev

python3 -m pip install nebula3-python
python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html

# build and install
python3 -m pip install .

Playground

Clone this repository to your local directory first.

git clone https://github.com/wey-gu/nebula-dgl.git
cd nebula-dgl
  1. Deploy NebulaGraph playground with Nebula-UP:

Install NebulaGraph:

curl -fsSL nebula-up.siwei.io/install.sh | bash

Load example data:

~/.nebula-up/load-basketballplayer-dataset.sh
  1. Create a jupyter notebook in same docker network: nebula-net
docker run -it --name dgl -p 8888:8888 --network nebula-net \
    -v "$PWD":/home/jovyan/work jupyter/datascience-notebook \
    start-notebook.sh --NotebookApp.token='secret'

Now you can either:

Or:

  • run ipython with the container:
docker exec -it dgl ipython
cd work
  1. Install nebula-dgl in notebook:

Install nebula-dgl:

!python3 -m pip install python3 -m pip install nebula3-python==3.3.0
!python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html
!python3 -m pip install .
  1. Try with a homogeneous graph:
import yaml
import networkx as nx

from nebula_dgl import NebulaLoader


nebula_config = {
    "graph_hosts": [
                ('graphd', 9669),
                ('graphd1', 9669),
                ('graphd2', 9669)
            ],
    "nebula_user": "root",
    "nebula_password": "nebula",
}

with open('example/homogeneous_graph.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_loader.load()

# or query based
query = """
MATCH p=()-[:follow]->() RETURN p
"""
nebula_loader = NebulaLoader(nebula_config, feature_mapper, query=query, query_space="basketballplayer")
homo_dgl_graph = nebula_loader.load()

nx_g = homo_dgl_graph.to_networkx()
nx.draw(nx_g, with_labels=True, pos=nx.spring_layout(nx_g))

Result:

nx_draw

  1. Compute the degree centrality of the graph:
nx.degree_centrality(nx_g)

Result:

{0: 0.0,
 1: 0.04,
 2: 0.02,
 3: 0.02,
 4: 0.06,
 5: 0.06,
 6: 0.04,
 7: 0.24,
 8: 0.16,
 9: 0.0,
 10: 0.02,
 11: 0.04,
 12: 0.04,
 13: 0.04,
 14: 0.1,
 15: 0.04,
 16: 0.0,
 17: 0.1,
 18: 0.04,
 19: 0.04,
 20: 0.0,
 21: 0.0,
 22: 0.04,
 23: 0.02,
 24: 0.02,
 25: 0.04,
 26: 0.06,
 27: 0.0,
 28: 0.02,
 29: 0.0,
 30: 0.04,
 31: 0.12,
 32: 0.04,
 33: 0.22,
 34: 0.14,
 35: 0.1,
 36: 0.04,
 37: 0.14,
 38: 0.1,
 39: 0.02,
 40: 0.14,
 41: 0.08,
 42: 0.1,
 43: 0.12,
 44: 0.12,
 45: 0.08,
 46: 0.1,
 47: 0.02,
 48: 0.04,
 49: 0.12,
 50: 0.06}

Nebula Graph to DGL

from nebula_dgl import NebulaLoader


nebula_config = {
    "graph_hosts": [
                ('graphd', 9669),
                ('graphd1', 9669),
                ('graphd2', 9669)
            ],
    "nebula_user": "root",
    "nebula_password": "nebula"
}

# load feature_mapper from yaml file
with open('example/nebula_to_dgl_mapper.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
dgl_graph = nebula_loader.load()

Play homogeneous graph algorithms in networkx

import networkx

with open('example/homogeneous_graph.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_loader.load()
nx_g = homo_dgl_graph.to_networkx()

# plot it
networkx.draw(nx_g, with_lables=True)

# get degree
networkx.degree(nx_g)

# get degree centrality
networkx.degree_centrality(nx_g)

Multi-Part Loader for Nebula Graph

  1. For now, the Multi-Part Loader is slow like sequence scan, need to profile the performance.
import yaml
import networkx as nx
import matplotlib.pyplot as plt

from nebula_dgl import NebulaReducedLoader


nebula_config = {
    "graph_hosts": [
                ('127.0.0.1', 9669)
            ],
    "nebula_user": "root",
    "nebula_password": "nebula",
}

with open('example/homogeneous_graph.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

# you only need change the following line: from NebulaLoader to NebulaReducedLoader
# Easy for you to use the multi-part loader 
nebula_reduced_loader = NebulaReducedLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_reduced_loader.load()
nx_g = homo_dgl_graph.to_networkx()
nx.draw(nx_g, with_labels=True, pos=nx.spring_layout(nx_g))
plt.savefig("multi_graph.png")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nebula-dgl-0.1.2.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

nebula_dgl-0.1.2-py3-none-any.whl (18.1 kB view details)

Uploaded Python 3

File details

Details for the file nebula-dgl-0.1.2.tar.gz.

File metadata

  • Download URL: nebula-dgl-0.1.2.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.8.0a2 CPython/3.11.4

File hashes

Hashes for nebula-dgl-0.1.2.tar.gz
Algorithm Hash digest
SHA256 cdde6e0f91b100fcd7e2826519b3c063ef99569ddde81142a785f94d19316187
MD5 005c76d8ae2479cf14435460611106b5
BLAKE2b-256 3e7efb4a92a238db03f2bedb15e14cfcc6a9931ea3e4b894be7428cee2118790

See more details on using hashes here.

Provenance

File details

Details for the file nebula_dgl-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: nebula_dgl-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 18.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.8.0a2 CPython/3.11.4

File hashes

Hashes for nebula_dgl-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3d1a66844991bc9b742eb3568f9506a83fe00d11ff7675b66d8e9195bd14d725
MD5 41feabae3e8af265f8d130165c5c9432
BLAKE2b-256 6d78c07ba864b3517e17f2eaea877d4801032a6ee520435cf370c3ab2a077bf9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page