Skip to main content

Lib for NebulaGraph integration with Deep Graph Library (DGL).

Project description

nebula-dgl

pdm-managed License

nebula-dgl is the Lib for Nebula Graph integration with Deep Graph Library (DGL).

nebula-dgl is still WIP, there is a demo project here .

Guide

Installation

Install from PyPi

python3 -m pip install nebula-dgl
python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html

Install from codebase for dev

python3 -m pip install nebula3-python
python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html

# build and install
python3 -m pip install .

Playground

Clone this repository to your local directory first.

git clone https://github.com/wey-gu/nebula-dgl.git
cd nebula-dgl
  1. Deploy NebulaGraph playground with Nebula-UP:

Install NebulaGraph:

curl -fsSL nebula-up.siwei.io/install.sh | bash

Load example data:

~/.nebula-up/load-basketballplayer-dataset.sh
  1. Create a jupyter notebook in same docker network: nebula-net
docker run -it --name dgl -p 8888:8888 --network nebula-net \
    -v "$PWD":/home/jovyan/work jupyter/datascience-notebook \
    start-notebook.sh --NotebookApp.token='secret'

Now you can either:

Or:

  • run ipython with the container:
docker exec -it dgl ipython
cd work
  1. Install nebula-dgl in notebook:

Install nebula-dgl:

!python3 -m pip install python3 -m pip install nebula3-python==3.3.0
!python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html
!python3 -m pip install .
  1. Try with a homogeneous graph:
import yaml
import networkx as nx

from nebula_dgl import NebulaLoader


nebula_config = {
    "graph_hosts": [
                ('graphd', 9669),
                ('graphd1', 9669),
                ('graphd2', 9669)
            ],
    "nebula_user": "root",
    "nebula_password": "nebula",
}

with open('example/homogeneous_graph.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_loader.load()

# or query based
query = """
MATCH p=()-[:follow]->() RETURN p
"""
nebula_loader = NebulaLoader(nebula_config, feature_mapper, query=query, query_space="basketballplayer")
homo_dgl_graph = nebula_loader.load()

nx_g = homo_dgl_graph.to_networkx()
nx.draw(nx_g, with_labels=True, pos=nx.spring_layout(nx_g))

Result:

nx_draw

  1. Compute the degree centrality of the graph:
nx.degree_centrality(nx_g)

Result:

{0: 0.0,
 1: 0.04,
 2: 0.02,
 3: 0.02,
 4: 0.06,
 5: 0.06,
 6: 0.04,
 7: 0.24,
 8: 0.16,
 9: 0.0,
 10: 0.02,
 11: 0.04,
 12: 0.04,
 13: 0.04,
 14: 0.1,
 15: 0.04,
 16: 0.0,
 17: 0.1,
 18: 0.04,
 19: 0.04,
 20: 0.0,
 21: 0.0,
 22: 0.04,
 23: 0.02,
 24: 0.02,
 25: 0.04,
 26: 0.06,
 27: 0.0,
 28: 0.02,
 29: 0.0,
 30: 0.04,
 31: 0.12,
 32: 0.04,
 33: 0.22,
 34: 0.14,
 35: 0.1,
 36: 0.04,
 37: 0.14,
 38: 0.1,
 39: 0.02,
 40: 0.14,
 41: 0.08,
 42: 0.1,
 43: 0.12,
 44: 0.12,
 45: 0.08,
 46: 0.1,
 47: 0.02,
 48: 0.04,
 49: 0.12,
 50: 0.06}

Nebula Graph to DGL

from nebula_dgl import NebulaLoader


nebula_config = {
    "graph_hosts": [
                ('graphd', 9669),
                ('graphd1', 9669),
                ('graphd2', 9669)
            ],
    "nebula_user": "root",
    "nebula_password": "nebula"
}

# load feature_mapper from yaml file
with open('example/nebula_to_dgl_mapper.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
dgl_graph = nebula_loader.load()

Play homogeneous graph algorithms in networkx

import networkx

with open('example/homogeneous_graph.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_loader.load()
nx_g = homo_dgl_graph.to_networkx()

# plot it
networkx.draw(nx_g, with_lables=True)

# get degree
networkx.degree(nx_g)

# get degree centrality
networkx.degree_centrality(nx_g)

Multi-Part Loader for Nebula Graph

  1. For now, the Multi-Part Loader is slow like sequence scan, need to profile the performance.
import yaml
import networkx as nx
import matplotlib.pyplot as plt

from nebula_dgl import NebulaReducedLoader


nebula_config = {
    "graph_hosts": [
                ('127.0.0.1', 9669)
            ],
    "nebula_user": "root",
    "nebula_password": "nebula",
}

with open('example/homogeneous_graph.yaml', 'r') as f:
    feature_mapper = yaml.safe_load(f)

# you only need change the following line: from NebulaLoader to NebulaReducedLoader
# Easy for you to use the multi-part loader 
nebula_reduced_loader = NebulaReducedLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_reduced_loader.load()
nx_g = homo_dgl_graph.to_networkx()
nx.draw(nx_g, with_labels=True, pos=nx.spring_layout(nx_g))
plt.savefig("multi_graph.png")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nebula-dgl-0.1.2.tar.gz (17.1 kB view hashes)

Uploaded Source

Built Distribution

nebula_dgl-0.1.2-py3-none-any.whl (18.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page