A simple Python snippets for NER evaluation
Project description
NER_eval
A simple implementation of strict/lenient matching to evaluate NER performance (precision, recall, F1-score) in 60 lines!
This script currently only supports the IOB2 format with both strict and lenient modes.
Installation
pip install ner_metrics
or
pip install git+https://github.com/PL97/NER_eval.git
Usage
from ner_metrics import classification_report
y_true = ['B-PER', 'I-PER', 'O', 'B-ORG', 'B-ORG', 'O', 'O', 'B-PER', 'I-PER', 'O']
y_pred = ['O', 'B-PER', 'O', 'B-ORG', 'B-ORG', 'I-ORG', 'O', 'B-PER', 'I-PER', 'O']
classification_report(tags_true=y_true, tags_pred=y_pred, mode="lenient") # for lenient match
classification_report(tags_true=y_true, tags_pred=y_pred, mode="strict") # for strict match
Expected output
tag(lenient): PER precision:1.0 recall:1.0 f1-score:1.0
tag(strict): PER precision:0.5 recall:0.5 f1-score:0.5
tag(lenient): ORG precision:1.0 recall:1.0 f1-score:1.0
tag(strict): ORG precision:0.5 recall:0.5 f1-score:0.5
The results are also saved to evaluation.json
How to cite this work
If you find this git repo useful, please consider citing it using the snippet below:
@misc{ner_eval,
author={Le Peng},
title={ner_metrics: A Simple Python Snippets for NER Evaluation},
howpublished={\url{https://github.com/PL97/NER_eval}},
year={2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file ner_metrics-0.1.2.tar.gz.
File metadata
- Download URL: ner_metrics-0.1.2.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4e949963bf5fb9569ec23cd0faf1f285105c5e9aedb39b0256c94d03c0ae8700
|
|
| MD5 |
f73819de48a4d91ae02dd3f0c0452fb0
|
|
| BLAKE2b-256 |
430e79dfa5a7e8f4d44356894029e21177e737ff2ce751ae9881c67fa036d852
|
File details
Details for the file ner_metrics-0.1.2-py3-none-any.whl.
File metadata
- Download URL: ner_metrics-0.1.2-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8e1674eac5aaf66ea932d14159bb1c2125f85a20caba17c4db376b9c76bfc875
|
|
| MD5 |
7eef736d65f1ebd6169eef9af46a2817
|
|
| BLAKE2b-256 |
8c61a576c4cf8fade70cc01395343796ba014493d729bbea3a3676f7903d61b2
|