Skip to main content

Python functions for working with deeply nested documents (lists and dicts)

Project description

https://img.shields.io/badge/pypi-0.2.21-green.svg https://travis-ci.org/rameshrvr/nested-lookup.svg?branch=master

Make working with JSON, YAML, and XML document responses fun again!

The nested_lookup package provides many Python functions for working with deeply nested documents. A document in this case is a a mixture of Python dictionary and list objects typically derived from YAML or JSON.

nested_lookup:
Perform a key lookup on a deeply nested document. Returns a list of matching values.
nested_update:
Given a document, find all occurences of the given key and update the value. By default, returns a copy of the document. To mutate the original specify the in_place=True argument.
nested_delete:
Given a document, find all occurrences of the given key and delete it. By default, returns a copy of the document. To mutate the original specify the in_place=True argument.
nested_alter:
Given a document, find all occurrences of the given key and alter it with a callback function. By default, returns a copy of the document. To mutate the original specify the in_place=True argument.
get_all_keys:
Fetch all keys from a deeply nested dictionary. Returns a list of keys.
get_occurrence_of_key/get_occurrence_of_value:
Returns the number of occurrences of a key/value from a nested dictionary.

For examples on how to invoke these functions, please check out the tutorial sections.

install

install from pypi using pip:

pip install nested-lookup

or easy_install:

easy_install nested-lookup

or install from source using:

git clone https://github.com/russellballestrini/nested-lookup.git
cd nested-lookup
pip install .

quick tutorial

This tutorial uses the Python Interactive shell, please follow along : )

Before we start, let’s define an example document to work on.

>>> document = [ { 'taco' : 42 } , { 'salsa' : [ { 'burrito' : { 'taco' : 69 } } ] } ]

First we will lookup a key from all layers of a document using nested_lookup:

>>> from nested_lookup import nested_lookup
>>> print(nested_lookup('taco', document))
[42, 69]

As you can see we were returned a list of two integers, these integers are the values from the matched key lookups.

Next we will update a key and it’s value from all layers of a document using nested_update:

>>> from nested_lookup import nested_update
>>> nested_update(document, key='burrito', value='Test')
[{'taco': 42}, {'salsa': [{'burrito': 'Test'}]}]

Here you see that the key ``burrito`` had it's value changed to the string ``'Test'``, like we asked.

Finally, lets test out a delete operation using nested_delete:

>>> from nested_lookup import nested_delete
>>> nested_delete(document, 'taco')
[{}, {'salsa': [{'burrito': {}}]}]

Perfect, the returned document looks just like we expected!

longer tutorial

You may control the function’s behavior by passing some optional arguments.

wild (defaults to False):
if wild is True, treat the given key as a case insensitive substring when performing lookups.
with_keys (defaults to False):
if with_keys is True, return a dictionary of all matched keys and a list of values.

For example, given the following document:

from nested_lookup import nested_lookup

my_document = {
   'name' : 'Russell Ballestrini',
   'email_address' : 'test1@example.com',
   'other' : {
       'secondary_email' : 'test2@example.com',
       'EMAIL_RECOVERY' : 'test3@example.com',
       'email_address' : 'test4@example.com',
    },
},

Next, we could act wild and find all the email addresses like this:

results = nested_lookup(
    key = 'mail',
    document = my_document,
    wild = True
)

print(results)
['test1@example.com', 'test4@example.com', 'test2@example.com', 'test3@example.com']

Additionally, if you also needed the matched key names, you could do this:

results = nested_lookup(
    key = 'mail',
    document = my_document,
    wild = True,
    with_keys = True,
)

print(results)
{
 'email_address': ['test1@example.com', 'test4@example.com'],
 'secondary_email': ['test2@example.com'],
 'EMAIL_RECOVERY': ['test3@example.com']
}

To lookup, update, and delete a key->value pair in nested document

from nested_lookup import nested_update, nested_delete

result = nested_delete(my_document, 'EMAIL_RECOVERY')

print(result)  # result => {'other': {'secondary_email': 'test2@example.com', 'email_address': 'test4@example.com'}, 'email_address': 'test1@example.com', 'name': 'Russell Ballestrini'}

result = nested_update(my_document, key='other', value='Test')

print(result)  # result => {'other': 'Test', 'email_address': 'test1@example.com', 'name': 'Russell Ballestrini'}

To get a list of every nested key in a document, run this:

from nested_lookup import get_all_keys

keys = get_all_keys(my_document)

print(keys)
['name', 'email_address', 'other', 'secondary_email', 'EMAIL_RECOVERY', 'email_address']

To get the number of occurrence of the given key/value

from nested_lookup import get_occurrence_of_key, get_occurrence_of_value

no_of_key_occurrence = get_occurrence_of_key(my_document, key='email_address')

print(no_of_key_occurrence)  # result => 2

no_of_value_occurrence = get_occurrence_of_value(my_document, value='test2@example.com')

print(no_of_value_occurrence)  # result => 1

To get the number of occurrence and their respective values

 from nested_lookup import get_occurrences_and_values

 my_documents = [
       {
           "processor_name": "4",
           "processor_speed": "2.7 GHz",
           "core_details": {
               "total_numberof_cores": "4",
               "l2_cache(per_core)": "256 KB",
           }
       }
   ]

 result = get_occurrences_and_values(my_documents, value='4')

 print(result)

 {
         "4": {
                 "occurrences": 2,
                 "values": [
                         {
                                 "processor_name": "4",
                                 "processor_speed": "2.7 GHz",
                                 "core_details": {
                                         "total_numberof_cores": "4",
                                         "l2_cache(per_core)": "256 KB"
                                 }
                         },
                         {
                                 "total_numberof_cores": "4",
                                 "l2_cache(per_core)": "256 KB"
                         }
                 ]
         }
}

nested_alter tutorial

Nested Alter: write a callback function which processes a scalar value. Be aware about the possible types which can be passed to the callback functions. In this example we can be sure that only int will be passed, in production you should check the type because it could be anything.

Before we start, let’s define an example document to work on.

>>> document = [ { 'taco' : 42 } , { 'salsa' : [ { 'burrito' : { 'taco' : 69 } } ] } ]
>>> def callback(data):
>>>     return data + 10 # add 10 to every taco prize

The alter-version only works for scalar input (one dict), if you need to adress a list of dicts, you have to manually iterate over those and pass them to nested_update one by one

>>> out =[]
>>> for elem in document:
>>>     altered_document = nested_alter(elem,"taco", callback)
>>>     out.append(altered_document)

>>> print(out)
[ { 'taco' : 52 } , { 'salsa' : [ { 'burrito' : { 'taco' : 79 } } ] } ]

>>> from nested_lookup import get_all_keys

>>> get_all_keys(document)
['taco', 'salsa', 'burrito', 'taco']

>>> from nested_lookup import get_occurrence_of_key, get_occurrence_of_value

>>> get_occurrence_of_key(document, key='taco')
2

>>> get_occurrence_of_value(document, value='42')
1

misc

license:
  • Public Domain
authors:
  • Russell Ballestrini
  • Douglas Miranda
  • Ramesh RV
  • Salfiii (Florian S.)
  • Matheus Lins
web:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for nested-lookup, version 0.2.21
Filename, size File type Python version Upload date Hashes
Filename, size nested-lookup-0.2.21.tar.gz (7.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page