Skip to main content

Package containing connectors for Neum AI.

Project description

Neum AI

Core library with Neum AI components to connect, load, chunk and sink vector embeddings. Neum AI is a data platform that helps developers leverage their data to contextualize Large Language Models through Retrieval Augmented Generation (RAG) This includes extracting data from existing data sources like document storage and NoSQL, processing the contents into vector embeddings and ingesting the vector embeddings into vector databases for similarity search.

It provides you a comprehensive solution for RAG that can scale with your application and reduce the time spent integrating services like data connectors, embedding models and vector databases.

Features

  • 🏭 High throughput distrubted architecture to handle billions of data points. Allows high degrees of parallelization to optimize embedding generation and ingestion.
  • 🧱 Built-in data connectors to common data sources, embedding services and vector stores.
  • 🔄 Real-time synchronization of data sources to ensure your data is always up-to-date.
  • 🤝 Cohesive data management to support hybrid retrieval with metdata. Neum AI automatically augments and tracks metadata to provide rich retrieval experience.

Getting Started

Neum AI Cloud

Sign up today at dasboard.neum.ai. See our quickstart to get started.

The Neum AI Cloud supports a large-scale, distrubted architecture to run millions of documents through vector embedding. For the full set of features see: Cloud vs Local

Local Development

Install the neumai package:

pip install neumai

To create your first data pipelines visit our quickstart.

Self-host

If you are interested in deploying Neum AI to your own cloud contact us at founders@tryneum.com.

We will publish soon an open-source self-host that leverages the framework's architecture to do high throughput data processing.

Roadmap

Connectors

  • MySQL - Source
  • GitHub - Source
  • Google Drive - Source
  • Hugging Face - Embedding
  • LanceDB - Sink
  • Milvus - Sink
  • Chroma - Sink

Search

  • Retrieval feedback
  • Filter support
  • Unified Neum AI filters
  • Self-Query Retrieval (w/ Metadata attributes generation)

Extensibility

  • Langchain / Llama Index Document to Neum Document converter
  • Custom chunking and loading

Experimental

  • Async metadata augmentation
  • Chat history connector
  • Structured (SQL and GraphQL) search connector

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neumai-0.0.40.tar.gz (42.3 kB view details)

Uploaded Source

Built Distribution

neumai-0.0.40-py3-none-any.whl (73.1 kB view details)

Uploaded Python 3

File details

Details for the file neumai-0.0.40.tar.gz.

File metadata

  • Download URL: neumai-0.0.40.tar.gz
  • Upload date:
  • Size: 42.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for neumai-0.0.40.tar.gz
Algorithm Hash digest
SHA256 b9d8bd9e2d9b102397f4c758aa10a22794ddb18fca06c56101b6303077d8b826
MD5 cc07e98809ae5768cf8947c10d6d3891
BLAKE2b-256 783ed26213378b85d7bc2916f9db49222daf83ab969520fac0192f44d3767443

See more details on using hashes here.

File details

Details for the file neumai-0.0.40-py3-none-any.whl.

File metadata

  • Download URL: neumai-0.0.40-py3-none-any.whl
  • Upload date:
  • Size: 73.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for neumai-0.0.40-py3-none-any.whl
Algorithm Hash digest
SHA256 39cdf7f8a165118ab85c23a07b369bea68a2f521919a9674e1f05d06aa1406e9
MD5 50c3439aeb365645a4e4654e12804c5d
BLAKE2b-256 1ac2586f7a6c90f9d540ed5bb37f44d9a088896fc0433dd008de9e586df709b6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page