Skip to main content

Repository of Intel® Neural Compressor

Project description

Intel® Neural Compressor

An open-source Python library supporting popular model compression techniques on all mainstream deep learning frameworks (TensorFlow, PyTorch, and ONNX Runtime)

python version license coverage Downloads

Architecture   |   Workflow   |   LLMs Recipes   |   Results   |   Documentations


Intel® Neural Compressor aims to provide popular model compression techniques such as quantization, pruning (sparsity), distillation, and neural architecture search on mainstream frameworks such as TensorFlow, PyTorch, and ONNX Runtime, as well as Intel extensions such as Intel Extension for TensorFlow and Intel Extension for PyTorch. In particular, the tool provides the key features, typical examples, and open collaborations as below:

What's New

  • [2024/10] Transformers-like API for INT4 inference on Intel CPU and GPU.
  • [2024/07] From 3.0 release, framework extension API is recommended to be used for quantization.
  • [2024/07] Performance optimizations and usability improvements on client-side.

Installation

Choose the necessary framework dependencies to install based on your deploy environment.

Install Framework

Install Neural Compressor from pypi

# Install 2.X API + Framework extension API + PyTorch dependency
pip install neural-compressor[pt]
# Install 2.X API + Framework extension API + TensorFlow dependency
pip install neural-compressor[tf]

Note: Further installation methods can be found under Installation Guide. check out our FAQ for more details.

Getting Started

After successfully installing these packages, try your first quantization program. Following example code demonstrates FP8 Quantization, it is supported by Intel Gaudi2 AI Accelerator.
To try on Intel Gaudi2, docker image with Gaudi Software Stack is recommended, please refer to following script for environment setup. More details can be found in Gaudi Guide.

Run a container with an interactive shell, more info

docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.21.0/ubuntu24.04/habanalabs/pytorch-installer-2.6.0:latest

Note: Since Habana software >= 1.21.0, PT_HPU_LAZY_MODE=0 is the default setting. However, most low-precision functions (such as convert_from_uint4) do not support this setting. Therefore, we recommend setting PT_HPU_LAZY_MODE=1 to maintain compatibility.

Run the example,

from neural_compressor.torch.quantization import (
    FP8Config,
    prepare,
    convert,
)

import torch
import torchvision.models as models

model = models.resnet18()
qconfig = FP8Config(fp8_config="E4M3")
model = prepare(model, qconfig)

# Customer defined calibration. Below is a dummy calibration
model(torch.randn(1, 3, 224, 224).to("hpu"))

model = convert(model)

output = model(torch.randn(1, 3, 224, 224).to("hpu")).to("cpu")
print(output.shape)

More FP8 quantization doc.

Following example code demonstrates weight-only large language model loading on Intel Gaudi2 AI Accelerator.

from neural_compressor.torch.quantization import load

model_name = "TheBloke/Llama-2-7B-GPTQ"
model = load(
    model_name_or_path=model_name,
    format="huggingface",
    device="hpu",
    torch_dtype=torch.bfloat16,
)

Note: Intel Neural Compressor will convert the model format from auto-gptq to hpu format on the first load and save hpu_model.safetensors to the local cache directory for the next load. So it may take a while to load for the first time.

Documentation

Overview
Architecture Workflow APIs LLMs Recipes Examples
PyTorch Extension APIs
Overview Dynamic Quantization Static Quantization Smooth Quantization
Weight-Only Quantization FP8 Quantization MX Quantization Mixed Precision
Tensorflow Extension APIs
Overview Static Quantization Smooth Quantization
Transformers-like APIs
Overview
Other Modules
Auto Tune Benchmark

Note: From 3.0 release, we recommend to use 3.X API. Compression techniques during training such as QAT, Pruning, Distillation only available in 2.X API currently.

Selected Publications/Events

Note: View Full Publication List.

Additional Content

Communication

  • GitHub Issues: mainly for bug reports, new feature requests, question asking, etc.
  • Email: welcome to raise any interesting research ideas on model compression techniques by email for collaborations.
  • Discord Channel: join the discord channel for more flexible technical discussion.
  • WeChat group: scan the QA code to join the technical discussion.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neural_compressor_pt-3.4.1.tar.gz (383.1 kB view details)

Uploaded Source

Built Distribution

neural_compressor_pt-3.4.1-py3-none-any.whl (484.1 kB view details)

Uploaded Python 3

File details

Details for the file neural_compressor_pt-3.4.1.tar.gz.

File metadata

  • Download URL: neural_compressor_pt-3.4.1.tar.gz
  • Upload date:
  • Size: 383.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.14

File hashes

Hashes for neural_compressor_pt-3.4.1.tar.gz
Algorithm Hash digest
SHA256 95a02ee3691a7cc016642763f40f6201520979f8a88e4f9198d0678d112e2025
MD5 87fb60c7a33eb52834f4ca21fa41a128
BLAKE2b-256 4c82e44fc169e3f0db3a0cc9422edae7c44b340cea659326f70224e90007172a

See more details on using hashes here.

File details

Details for the file neural_compressor_pt-3.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for neural_compressor_pt-3.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 906801ee2cfaec94845fa003581faa9aeb9f3dd509612e3cc102c602f6acf260
MD5 e883cd8fcf4f2c1cb1e63b782dfcea32
BLAKE2b-256 0a398a59aab52a5aef77e9006da66c77ea0d2540ca0b5d3f16194b943395c8d6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page