Skip to main content

The Python Toolbox for Neurophysiological Signal Processing.

Project description

https://raw.github.com/neuropsychology/NeuroKit/master/docs/img/banner.png https://img.shields.io/pypi/pyversions/neurokit2.svg https://img.shields.io/pypi/v/neurokit2.svg https://travis-ci.org/neuropsychology/NeuroKit.svg?branch=master https://codecov.io/gh/neuropsychology/NeuroKit/branch/master/graph/badge.svg https://img.shields.io/pypi/dm/neurokit2 Maintainability

The Python Toolbox for Neurophysiological Signal Processing (EDA, ECG, PPG, EMG, EEG…)

This package is the continuation of NeuroKit1. It’s a user-friendly package with which you can analyze your physiological data with only two lines of code.

Installation

To install NeuroKit2, run this command in your terminal:

pip install https://github.com/neuropsychology/neurokit/zipball/master

Contribution

NeuroKit2 is a collaborative project with a community of contributors with all levels of development expertise. Thus, if you have some ideas for improvement, new features, or just want to learn Python and do something useful at the same time, do not hesitate and check out the CONTRIBUTION guide.

Documentation

Documentation Status API Tutorials https://mybinder.org/badge_logo.svg

Click on the links above and check out our tutorials:

Citation

https://zenodo.org/badge/218212111.svg https://img.shields.io/badge/details-authors-purple.svg?colorB=9C27B0

You can run:

nk.cite()
You can cite NeuroKit2 as follows:

- Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Pham, H., Lesspinasse, F.,
  Schölzel, C., & S H Chen, A. (2020). NeuroKit2: A Python Toolbox for Neurophysiological
  Signal Processing. Retrieved March 28, 2020, from https://github.com/neuropsychology/NeuroKit

Full bibtex reference:

@misc{neurokit2,
  doi = {10.5281/ZENODO.3597887},
  url = {https://github.com/neuropsychology/NeuroKit},
  author = {Makowski, Dominique and Pham, Tam and Lau, Zen J. and Brammer, Jan C. and Pham, Hung and Lespinasse, Fran\c{c}ois and Schölzel, Christopher and S H Chen, Annabel},
  title = {NeuroKit2: A Python Toolbox for Neurophysiological Signal Processing},
  publisher = {Zenodo},
  year = {2020},
}

Overview

Simulate physiological signals

import numpy as np
import pandas as pd
import neurokit2 as nk

# Generate synthetic signals
ecg = nk.ecg_simulate(duration=10, heart_rate=70)
ppg = nk.ppg_simulate(duration=10, heart_rate=70)
rsp = nk.rsp_simulate(duration=10, respiratory_rate=15)
eda = nk.eda_simulate(duration=10, scr_number=3)
emg = nk.emg_simulate(duration=10, burst_number=2)

# Visualise biosignals
data = pd.DataFrame({"ECG": ecg,
                     "PPG": ppg,
                     "RSP": rsp,
                     "EDA": eda,
                     "EMG": emg})
nk.signal_plot(data, subplots=True)
https://raw.github.com/neuropsychology/NeuroKit/master/docs/img/README_simulation.png

Electrodermal Activity (EDA)

# Generate 10 seconds of EDA signal (recorded at 250 samples / second) with 2 SCR peaks
eda = nk.eda_simulate(duration=10, sampling_rate=250, scr_number=2 drift=0.01)

# Process it
signals, info = nk.eda_process(eda, sampling_rate=250)

# Visualise the processing
nk.eda_plot(signals, sampling_rate=250)
https://raw.github.com/neuropsychology/NeuroKit/master/docs/img/README_eda.png

Cardiac activity (ECG)

# Generate 15 seconds of ECG signal (recorded at 250 samples / second)
ecg = nk.ecg_simulate(duration=15, sampling_rate=250, heart_rate=70)

# Process it
signals, info = nk.ecg_process(ecg, sampling_rate=250)

# Visualise the processing
nk.ecg_plot(signals, sampling_rate=250)
https://raw.github.com/neuropsychology/NeuroKit/master/docs/img/README_ecg.png

Respiration (RSP)

# Generate one minute of respiratory (RSP) signal (recorded at 250 samples / second)
rsp = nk.rsp_simulate(duration=60, sampling_rate=250, respiratory_rate=15)

# Process it
signals, info = nk.rsp_process(rsp, sampling_rate=250)

# Visualise the processing
nk.rsp_plot(signals, sampling_rate=250)
https://raw.github.com/neuropsychology/NeuroKit/master/docs/img/README_rsp.png

Electromyography (EMG)

# Generate 10 seconds of EMG signal (recorded at 250 samples / second)
emg = nk.emg_simulate(duration=10, sampling_rate=250, burst_number=3)

# Process it
signals = nk.emg_process(emg, sampling_rate=250)

# Visualise the processing
nk.emg_plot(signals, sampling_rate=250)
https://raw.github.com/neuropsychology/NeuroKit/master/docs/img/README_emg.png

Photoplethysmography (PPG/BVP)

# Generate 15 seconds of PPG signal (recorded at 250 samples / second)
ppg = nk.ppg_simulate(duration=15, sampling_rate=250, heart_rate=70)

Electrogastrography (EGG)

Consider helping us develop it!

Alternatives

Here’s a list of great alternative packages that you should check out:

EDA

EEG

Eye-Tracking

News

0.0.1 (2019-10-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for neurokit2, version 0.0.18
Filename, size File type Python version Upload date Hashes
Filename, size neurokit2-0.0.18.tar.gz (9.7 MB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page