Skip to main content

A Flexible Network Data Analysis Framework

Project description

NFStream Logo


NFStream is a multiplatform Python framework providing fast, flexible, and expressive data structures designed to make working with online or offline network data easy and intuitive. It aims to be Python's fundamental high-level building block for doing practical, real-world network flow data analysis. Additionally, it has the broader goal of becoming a unifying network data analytics framework for researchers providing data reproducibility across experiments.

Live Notebook live notebook
Project Website website
Discussion Channel Gitter
Latest Release latest release
Supported Versions python3 pypy3
Project License License
Continuous Integration Linux WorkFlows MacOS WorkFlows Windows WorkFlows
Code Quality Coverage Fuzzing Quality

Table of Contents

Main Features

  • Performance: NFStream is designed to be fast: AF_PACKET_V3/FANOUT on Linux, multiprocessing, native CFFI based computation engine, and PyPy full support.
  • Encrypted layer-7 visibility: NFStream deep packet inspection is based on nDPI. It allows NFStream to perform reliable encrypted applications identification and metadata fingerprinting (e.g. TLS, SSH, DHCP, HTTP).
  • System visibility: NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.
  • Statistical features extraction: NFStream provides state of the art of flow-based statistical feature extraction. It includes post-mortem statistical features (e.g., minimum, mean, standard deviation, and maximum of packet size and inter-arrival time) and early flow features (e.g. sequence of first n packets sizes, inter-arrival times, and directions).
  • Flexibility: NFStream is easily extensible using NFPlugins. It allows the creation of a new flow feature within a few lines of Python.
  • Machine Learning oriented: NFStream aims to make Machine Learning Approaches for network traffic management reproducible and deployable. By using NFStream as a common framework, researchers ensure that models are trained using the same feature computation logic, and thus, a fair comparison is possible. Moreover, trained models can be deployed and evaluated on live networks using NFPlugins.

How to get it?

Binary installers for the latest released version are available on Pypi.

pip install nfstream

Windows Notes: NFStream does not include capture drivers on Windows (license restrictions). It is required to install Npcap drivers before installing NFStream. If Wireshark is already installed on Windows, then Npcap drivers are already installed, and you do not need to perform any additional action.

How to use it?

Encrypted application identification and metadata extraction

Dealing with a big pcap file and want to aggregate into labeled network flows? NFStream make this path easier in a few lines:

from nfstream import NFStreamer
# We display all streamer parameters with their default values.
# See documentation for detailed information about each parameter.
# https://www.nfstream.org/docs/api#nfstreamer
my_streamer = NFStreamer(source="facebook.pcap", # or live network interface
                         decode_tunnels=True,
                         bpf_filter=None,
                         promiscuous_mode=True,
                         snapshot_length=1536,
                         idle_timeout=120,
                         active_timeout=1800,
                         accounting_mode=0,
                         udps=None,
                         n_dissections=20,
                         statistical_analysis=False,
                         splt_analysis=0,
                         n_meters=0,
                         max_nflows=0,
                         performance_report=0,
                         system_visibility_mode=0,
                         system_visibility_poll_ms=100)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      application_name='TLS.Facebook',
      application_category_name='SocialNetwork',
      application_is_guessed=0,
      application_confidence=4,
      requested_server_name='facebook.com',
      client_fingerprint='bfcc1a3891601edb4f137ab7ab25b840',
      server_fingerprint='2d1eb5817ece335c24904f516ad5da12',
      user_agent='',
      content_type='')

System visibility

NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="Intel(R) Wi-Fi 6 AX200 160MHz", # Live capture mode. 
                         # Disable L7 dissection for readability purpose only.
                         n_dissections=0,
                         system_visibility_poll_ms=100,
                         system_visibility_mode=1)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=59339,
      dst_ip='184.73.244.37',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1638966705265,
      bidirectional_last_seen_ms=1638966706999,
      bidirectional_duration_ms=1734,
      bidirectional_packets=98,
      bidirectional_bytes=424464,
      src2dst_first_seen_ms=1638966705265,
      src2dst_last_seen_ms=1638966706999,
      src2dst_duration_ms=1734,
      src2dst_packets=22,
      src2dst_bytes=2478,
      dst2src_first_seen_ms=1638966705345,
      dst2src_last_seen_ms=1638966706999,
      dst2src_duration_ms=1654,
      dst2src_packets=76,
      dst2src_bytes=421986,
      # The process that generated this reported flow. 
      system_process_pid=14596,
      system_process_name='FortniteClient-Win64-Shipping.exe')

Post-mortem statistical flow features extraction

NFStream performs 48 post-mortem flow statistical features extraction, which includes detailed TCP flags analysis, minimum, mean, maximum, and standard deviation of both packet size and inter-arrival time in each direction.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # Disable L7 dissection for readability purpose.
                         n_dissections=0,  
                         statistical_analysis=True)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      bidirectional_min_ps=66,
      bidirectional_mean_ps=302.36842105263156,
      bidirectional_stddev_ps=425.53315715259754,
      bidirectional_max_ps=1454,
      src2dst_min_ps=66,
      src2dst_mean_ps=149.44444444444446,
      src2dst_stddev_ps=132.20354676701294,
      src2dst_max_ps=449,
      dst2src_min_ps=66,
      dst2src_mean_ps=440.0,
      dst2src_stddev_ps=549.7164925870628,
      dst2src_max_ps=1454,
      bidirectional_min_piat_ms=0,
      bidirectional_mean_piat_ms=72.22222222222223,
      bidirectional_stddev_piat_ms=137.34994188549086,
      bidirectional_max_piat_ms=398,
      src2dst_min_piat_ms=0,
      src2dst_mean_piat_ms=130.375,
      src2dst_stddev_piat_ms=179.72036811192467,
      src2dst_max_piat_ms=415,
      dst2src_min_piat_ms=0,
      dst2src_mean_piat_ms=110.77777777777777,
      dst2src_stddev_piat_ms=169.51458475436397,
      dst2src_max_piat_ms=409,
      bidirectional_syn_packets=2,
      bidirectional_cwr_packets=0,
      bidirectional_ece_packets=0,
      bidirectional_urg_packets=0,
      bidirectional_ack_packets=18,
      bidirectional_psh_packets=9,
      bidirectional_rst_packets=0,
      bidirectional_fin_packets=0,
      src2dst_syn_packets=1,
      src2dst_cwr_packets=0,
      src2dst_ece_packets=0,
      src2dst_urg_packets=0,
      src2dst_ack_packets=8,
      src2dst_psh_packets=4,
      src2dst_rst_packets=0,
      src2dst_fin_packets=0,
      dst2src_syn_packets=1,
      dst2src_cwr_packets=0,
      dst2src_ece_packets=0,
      dst2src_urg_packets=0,
      dst2src_ack_packets=10,
      dst2src_psh_packets=5,
      dst2src_rst_packets=0,
      dst2src_fin_packets=0)

Early statistical flow features extraction

NFStream performs early (up to 255 packets) flow statistical features extraction (referred to as SPLT analysis in the literature). It is summarized as a sequence of these packets' directions, sizes, and inter-arrival times.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # We disable l7 dissection for readability purpose.
                         n_dissections=0,
                         splt_analysis=10)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      # The sequence of 10 first packet direction, size and inter arrival time.
      splt_direction=[0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
      splt_ps=[74, 74, 66, 262, 66, 1454, 66, 1454, 66, 463],
      splt_piat_ms=[0, 303, 0, 0, 313, 0, 0, 0, 0, 1])

Pandas export interface

NFStream natively supports Pandas as an export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#pandas-dataframe-conversion
from nfstream import NFStreamer
my_dataframe = NFStreamer(source='teams.pcap').to_pandas()[["src_ip",
                                                            "src_port",
                                                            "dst_ip", 
                                                            "dst_port", 
                                                            "protocol",
                                                            "bidirectional_packets",
                                                            "bidirectional_bytes",
                                                            "application_name"]]
my_dataframe.head(5)

Pandas

CSV export interface

NFStream natively supports CSV file format as an export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#csv-file-conversion
flows_count = NFStreamer(source='facebook.pcap').to_csv(path=None,
                                                        columns_to_anonymize=(),
                                                        flows_per_file=0,
                                                        rotate_files=0)

Extending NFStream

Didn't find a specific flow feature? add a plugin to NFStream in a few lines:

from nfstream import NFPlugin
    
class MyCustomPktSizeFeature(NFPlugin):
    def on_init(self, packet, flow):
        # flow creation with the first packet
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size = 1
        else:
            flow.udps.packet_with_custom_size = 0
 
    def on_update(self, packet, flow):
        # flow update with each packet belonging to the flow 
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size += 1


extended_streamer = NFStreamer(source='facebook.pcap', 
                               udps=MyCustomPktSizeFeature(custom_size=555))

for flow in extended_streamer:
    # see your dynamically created metric in generated flows
    print(flow.udps.packet_with_custom_size) 

Machine Learning models training and deployment

The following simplistic example demonstrates how to train and deploy a machine-learning approach for traffic flow categorization. We want to run a classification of Social Network category flows based on bidirectional_packets and bidirectional_bytes as input features. For the sake of brevity, we decide to predict only at the flow expiration stage.

Training the model

from nfstream import NFPlugin, NFStreamer
import numpy
from sklearn.ensemble import RandomForestClassifier

df = NFStreamer(source="training_traffic.pcap").to_pandas()
X = df[["bidirectional_packets", "bidirectional_bytes"]]
y = df["application_category_name"].apply(lambda x: 1 if 'SocialNetwork' in x else 0)
model = RandomForestClassifier()
model.fit(X, y)

ML powered streamer on live traffic

class ModelPrediction(NFPlugin):
    def on_init(self, packet, flow):
        flow.udps.model_prediction = 0
    def on_expire(self, flow):
        # You can do the same in on_update entrypoint and force expiration with custom id. 
        to_predict = numpy.array([flow.bidirectional_packets,
                                  flow.bidirectional_bytes]).reshape((1,-1))
        flow.udps.model_prediction = self.my_model.predict(to_predict)

ml_streamer = NFStreamer(source="eth0", udps=ModelPrediction(my_model=model))
for flow in ml_streamer:
    print(flow.udps.model_prediction)

More NFPlugin examples and details are provided in the official documentation. You can also test NFStream without installation using our live demo notebook.

Building from sources l m w

To build NFStream from sources, please read the installation guide provided in the official documentation.

Contributing

Please read Contributing for details on our code of conduct and the process for submitting pull requests to us.

Ethics

NFStream is intended for network data research and forensics. Researchers and network data scientists can use this framework to build reliable datasets and train and evaluate network-applied machine learning models. As with any packet monitoring tool, NFStream could be misused. Do not run it on any network that you do not own or administrate.

Credits

Citation

NFStream paper is published in Computer Networks (COMNET). If you use NFStream in a scientific publication, we would appreciate citations to the following article:

@article{AOUINI2022108719,
  title = {NFStream: A flexible network data analysis framework},
  author = {Aouini, Zied and Pekar, Adrian},
  doi = {10.1016/j.comnet.2021.108719},
  issn = {1389-1286},
  journal = {Computer Networks},
  pages = {108719},
  year = {2022},
  publisher = {Elsevier},
  volume = {204},
  url = {https://www.sciencedirect.com/science/article/pii/S1389128621005739}
}

Authors

The following people contributed to NFStream:

Supporting organizations

The following organizations supported NFStream:

sah tuke ntop nmap google

Publications that use NFStream

More than 100 research papers have already used NFStream as part of their processing pipelines.

License

This project is licensed under the LGPLv3 License - see the License file for details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

nfstream-6.5.4-cp314-cp314t-win_amd64.whl (789.8 kB view details)

Uploaded CPython 3.14tWindows x86-64

nfstream-6.5.4-cp314-cp314t-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp314-cp314t-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp314-cp314t-macosx_11_0_arm64.whl (746.9 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

nfstream-6.5.4-cp314-cp314t-macosx_10_15_x86_64.whl (109.6 kB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

nfstream-6.5.4-cp314-cp314-win_amd64.whl (789.2 kB view details)

Uploaded CPython 3.14Windows x86-64

nfstream-6.5.4-cp314-cp314-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp314-cp314-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp314-cp314-macosx_11_0_arm64.whl (746.8 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

nfstream-6.5.4-cp314-cp314-macosx_10_15_x86_64.whl (109.4 kB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

nfstream-6.5.4-cp313-cp313-win_amd64.whl (776.0 kB view details)

Uploaded CPython 3.13Windows x86-64

nfstream-6.5.4-cp313-cp313-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp313-cp313-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp313-cp313-macosx_11_0_arm64.whl (746.7 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

nfstream-6.5.4-cp313-cp313-macosx_10_13_x86_64.whl (109.1 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

nfstream-6.5.4-cp312-cp312-win_amd64.whl (776.0 kB view details)

Uploaded CPython 3.12Windows x86-64

nfstream-6.5.4-cp312-cp312-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp312-cp312-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp312-cp312-macosx_11_0_arm64.whl (746.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

nfstream-6.5.4-cp312-cp312-macosx_10_13_x86_64.whl (109.1 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

nfstream-6.5.4-cp311-cp311-win_amd64.whl (775.9 kB view details)

Uploaded CPython 3.11Windows x86-64

nfstream-6.5.4-cp311-cp311-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp311-cp311-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp311-cp311-macosx_11_0_arm64.whl (746.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

nfstream-6.5.4-cp311-cp311-macosx_10_9_x86_64.whl (109.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

nfstream-6.5.4-cp310-cp310-win_amd64.whl (775.9 kB view details)

Uploaded CPython 3.10Windows x86-64

nfstream-6.5.4-cp310-cp310-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp310-cp310-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp310-cp310-macosx_11_0_arm64.whl (746.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

nfstream-6.5.4-cp310-cp310-macosx_10_9_x86_64.whl (109.1 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

nfstream-6.5.4-cp39-cp39-win_amd64.whl (775.9 kB view details)

Uploaded CPython 3.9Windows x86-64

nfstream-6.5.4-cp39-cp39-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

nfstream-6.5.4-cp39-cp39-musllinux_1_2_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

nfstream-6.5.4-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

nfstream-6.5.4-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

nfstream-6.5.4-cp39-cp39-macosx_11_0_arm64.whl (746.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

nfstream-6.5.4-cp39-cp39-macosx_10_9_x86_64.whl (109.1 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

nfstream-6.5.4-cp38-cp38-win_amd64.whl (775.8 kB view details)

Uploaded CPython 3.8Windows x86-64

nfstream-6.5.4-cp38-cp38-macosx_11_0_arm64.whl (110.7 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

nfstream-6.5.4-cp38-cp38-macosx_10_9_x86_64.whl (748.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file nfstream-6.5.4-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 789.8 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 d72e93afe3d1ecdbb27d9325194a02e68251cc413f02e7972b9b4dd54b642efc
MD5 07bf6e1c802446cd76a6973475a151c6
BLAKE2b-256 6e1dfe1dec1fb96980feb45fd63bb0ef96e66b0381df77efdfe158b493a5d46e

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 58deaa54de8d748984db813e2ec230f8efad2c747d54e2a0f27350ba91b378ce
MD5 9682ad9ac93bbd827b03bbc96d31d430
BLAKE2b-256 3a47858060e6e494ec31c667b9ada1683cdc64fb883d4989b6dcb205d887ba84

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ec897556060bea4a51b2d16d2d4225f840d2eb767c1ca765052061bf303b76c8
MD5 b6c9ff64132199e076133469d74bccc3
BLAKE2b-256 12f3186571e2e4d71a22559741cf21d4e24cfdb8791211b2030371edeb6a323f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 dfc79a326a084ede5c854f1baab20da74efb9757b5e19c447346077127c76db8
MD5 b93c809aa31955f7d9f6eb76dcd01708
BLAKE2b-256 65fb5a9b92a67f5b82ffd9ea403ec2b0fd49e20f5ba7c469404f0b22e1996e3d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 5b0c27084bb2c8d441da5a9996db928919905551242e89a8a82d197053d996a0
MD5 72d928d5d9fc9b76176ecc0be0d20ca2
BLAKE2b-256 c6adef621af63b2c2fca9273f209ca1ce8fbec002c2f4ce9bafb5ad172f63d45

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e44837d60334c290c2027c70a4bb3178a02e8d2cdd3443900586b502dbb87a2
MD5 947172c235a81ac67e4275e89e400149
BLAKE2b-256 518c0e7a386487ed70ec39955524eef2f136de126ce781a827e60655ae990ac5

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6ddd6af30c0894d3d3c80dd65bdf951e5fdc5c018d680e3f97d817ab21e142ca
MD5 44eae6d1d849a993cbb359b889bde796
BLAKE2b-256 d0a67b230a814a234afd00e5b0663eeaaf4c5408e657b50eef3dd386006ee5ca

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 789.2 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 c6d72155597885800a9b054b6f173b6e300390a0d7cc29109195f20abaa0bc41
MD5 9ec4b9664a05c7b48029025ce75e9659
BLAKE2b-256 635c1c8715da3e2ab2715e5197d422f043769d5eef9ab1256a50add62d0d81ae

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 87c422aa0a640124f20f5c4641532d742be9cdc63e32b4e7336136bbc575eade
MD5 7539da9093c4ee34f1a52eda0d08d499
BLAKE2b-256 2e6f9aee6c5c80524391fdc1634470ae67f41143d19b1fe8def30f8deb392f20

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 976155a57808674205b39750f133c487365e16b66943bb2fb00cface26a60e38
MD5 dc567c95567a5cf29c86004e618f4563
BLAKE2b-256 7d297b09e96ec965c69ce27d98f9e125e5272ba9e4c228a5940f87e69de0bef3

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 230a9b37b38165725c89e2cab9166b4936d1a4ce9e05b5beaa647eeb67efd738
MD5 c0fcf67d65068adcd50ea771860a5927
BLAKE2b-256 33b61ddb633c514c043e4953df05007c27561abdb8df6059b10eef8b1ffbcf18

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 0f00237532183ae4b620875032cad067d77a462018635f964b29bdb59dff9163
MD5 623815ab825c7447e568d1fd07c2bcd9
BLAKE2b-256 7950305ad9871197b677c73b27160d3655bfa007429429f62529ac113a387091

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e995161301d9408e82f55bb3cdfd646170611d9b6a20409037fe4d2dd600d04d
MD5 8e519943348dd8413c679a88bc79f20b
BLAKE2b-256 05542382a28a9871c778df0ccb15fdc1d8aff4da0305f27bedb448e7b7a1d0c0

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 50eed8c3f1f32f5fe184dfca363182551cddfa08c185168240213604a30113ae
MD5 01aaf8da7cd4c99503c5f22d0bc6b3f7
BLAKE2b-256 713988dc19464b46f547ec1f3982880595041c06da6877951d1a9f3a0e7b8bea

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 776.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 56f55140e5694a8367fb9c3f1cf385f70e78083984f0132cac503ec049a4c5ec
MD5 460f2635359ab000ff9f6adafb36c647
BLAKE2b-256 34622718ebaf7dd6aa994763986c223a5e0612db3430c6bd773957d09e0fc488

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a388488e1f160935754c653853bb8cbdff7c23b0e96bb60f1ae234e50fe9c495
MD5 eb3bab02e83038b05f19025c0a1bb20b
BLAKE2b-256 3057ac1b2e5e5440bd9a3a5228f9a3084d16064e3b225e3ada7b5dbf0e709fb6

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e2c10e95ee5e90156e6666e41db9d26cc44926a4f86e06698f62b53fc91b269d
MD5 9a42b17905aa86b8036abb7b8072ed8b
BLAKE2b-256 10cc18df7bf66f6a4a79a361ddd8cd7ed922346a762d77903efd9d337b0b0c29

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 53b2110674eb0210c088106432512410eecc3e15fd67bf990e2e4755e3b39390
MD5 f537b9d5bfd43dbf2f711f7eea7473a6
BLAKE2b-256 fa7f15399fc383a63c3879e26c4abf857919836409f899bb6c6e226f0ab346f0

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 779ae492ea97de7beaaa096d8930e1f55b5a055c36dd487a6a2cecc147323171
MD5 68a24f3991e42329e8869944b2329fd9
BLAKE2b-256 cee27ec41f234ffcf32eac7c14e7eefffb90466a35500b0e96e635be19cddb45

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a98ccd1396eb9ce4b53c63684eae00bb6d70246da86c4bb095129a3c99a6fad3
MD5 711eaaf4eaf95f271657a58e0f63cd41
BLAKE2b-256 ba9835aec7f1fd05065e7a8d02e27c2158136cfef597112c37b58048d79a65c8

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f088b04acda7edfc6fd8bd7c559a4612ed60499142cadfaa79e73bd612b23124
MD5 0bbe8fae7004ec82f189c1e9b171b0c7
BLAKE2b-256 55226856607c9eb39284fc56d9f9ea7db0ccefa3706913bcfb297e945f1b64fd

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 776.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 505a6137a9a4494420b5fb4a17c3908c915a886708b32793cf7e8ada2e013b5c
MD5 f9db74da491da72a3092b0e28de37adf
BLAKE2b-256 1028626dea46a9a330a5c82686f69509acf02c06c3267a8df3172a771d5ef094

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8dfa2043b54ac2326eab303ceef62bc9783cdfd0da41704afac4a6ff101ec7c4
MD5 584a640fe8209dd83feac9df374fd6d9
BLAKE2b-256 00e1cfe4cfafd8db2beabfd2ef976e8037112d9c22fb3e9633265ec80842a993

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5f97976e95080bb8fdcc347b86f4403efa209afd96f4f25a1c3223e0c35f03ad
MD5 352017f894cc03352725a7e73eaddacb
BLAKE2b-256 cf50071cb8016b9f022e41084efd876081825feafaa4a9332fd466d48a9f70c6

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3c3f114d91cc2abdc90b9823e1e24f0ddfa3f41d5240515d0de35bddfacf9d4f
MD5 42691fb8819129fa7c290fa30e9fcb61
BLAKE2b-256 eada0df3a19a0e51b13ddf260233c620d33557fb79de61ed324691838d2a1042

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 d153eb4ed4e95171a611a816da228e86fda88dbf46894b0ac2051b0bd1bb1071
MD5 fd01104e019acd97a1876b9abae92125
BLAKE2b-256 2ca987f6c01ccb4eeebf1c697d207154f7ae098beae47772782a79eb56c5171a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db1aa09380a6293c597d44e6a2261866953aeae087d7998580e8e29655ab3446
MD5 abea1d7862dedac86f385ec1607e2c1f
BLAKE2b-256 f9fdc9de6d8160af432d657f9b799f5a12dd0ac7f556e65b551e448141c46df3

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b8a8670a8c6252fc6c77329e3d58edadb8953199b24d98e40fa09d7ae6985fd6
MD5 a738c0ae676764aba579a1d9e123318d
BLAKE2b-256 cd251527ee0b269b795c79e64b460b4979ebae9ac9998a8acc8f574146d692ab

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 775.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6027603b4009dbd55068ba8002ec8386a87c9515ff02a8b0be17f8ab9659da0d
MD5 b19295672aaff56223b3422018b0a646
BLAKE2b-256 4cf640fdb4a541b6104a9a755710585c5ca804625c3952f4d0d3756806728927

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9bf78320b989b4982ba41953d4c4d78f0990997af1f66d84f52bc64c72958e25
MD5 a8e84f63906a994b7dc20f04994b1d82
BLAKE2b-256 a308ecf20e34375062b9d5ae51f2e71aa2168cd74f210742c0d5b78ecf1dee5c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 35cf7c668c53643a7518b8087e70d46f6943b8b67e57327572612c548af6ba82
MD5 590f33e16455d0ed16a5c0630934dc61
BLAKE2b-256 8eaaa10f544734caceb0c1c98e55a4ff66a47f36cc0d262161b98aef549f9625

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 71e07668b8dadfc9b76679d52e7307cc97f7e346bc83abc890751e80571871d4
MD5 6d36aec43c99105fa91e63f3109c6f5d
BLAKE2b-256 dd75fe502caeec367e018f13bbbc965d1089867a3767ac52c4a91cb0873fb112

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 45364a7c31e6fac9311da1491b93b0740681d54071202990a4b82f378a6baff9
MD5 86d83d3c43b0db55ff57b7af0d668fcf
BLAKE2b-256 6b5ec1f1e6713827951d2910b20511a4daee3f9feaf37f9ade9591e30b7f99e5

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ac91358ae9351de6e9af0ce8da2b6d23191335c86325ad38e32ae80a6f2076c
MD5 97c9c93b71c6aa05d2bca384456ac6f7
BLAKE2b-256 4792d12730d6c670150d271e34b0530a06662179ee13d8d15d75c16b448beff1

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85cfbc3e08fc3e6feaa89d904a33ab60aa1fdbd9f0bd729cfff0ca2b060ac687
MD5 e1da5fd3cbe9a75ba7cafea7b797d978
BLAKE2b-256 70877d19d297cb3975a48e18d1d9812dd0f8cba85dafac15937749fdfae8bb5c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 775.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b9d2ceda8758fe97143ffee038ba850d7db65de020e799a2f84c0944fda12b4a
MD5 340acecce7cdaf5e36c5ccbfbe3c50e2
BLAKE2b-256 586fcc712612d96f4c9a71351722477fa213e3175053d6680e616540b1f90d8f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ead15a34a016bb9d7626fabd5cf4b67d745abc6cae7dd6b2b6288906d37c4d24
MD5 4ae8a179d8a63ba4ad18128aa86043f8
BLAKE2b-256 c69657a175152d2a68373ddd005952d52055b71cb5926180877ed1e864eff808

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 16746b38b59c5457299c5fb2427102f675858ff7631987acd14998f0c55f32b1
MD5 6171eebfdc4811c072b2970a1edd2527
BLAKE2b-256 d7ff57b854d334d926062372bff1ed79963d3e332db432a4e67e90f85c1940d8

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 da111c3fc8d32a48360642f65a21d3ac41e253aa291b67a626c39a3415c6e1f9
MD5 53f510edba57d598a0431c4cd57b1e3f
BLAKE2b-256 78736e42b5ea1da5fcbf7d037c8db42cd7ba40834ed8d25bad054fcc6414dfed

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 06a9e09350c7da0cf0efc248c06fdf648e54407a47c4f9bd195738930aa30e77
MD5 f6e635b470f032f2e9056414e43333c8
BLAKE2b-256 289cd7070a7b14ebb074322cfc91189e0a0537ef44c4e49d474ba8a778b70c4b

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 254c4054acdd821187b03ad87c9ba0bf562671ff2613438600778e114a6859f1
MD5 4ac6f6c804054b3b6d6914485d11f88f
BLAKE2b-256 d66013e3ee42fa7c0edb5ea63cca69095ba32d149abcac0b4a6c626d04e40119

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 251d2731b6d8285816d2f6355aaffd44210715ebb3dcab90310456f0dee98ef4
MD5 242d2f090ff6025f9c1324d68810bd03
BLAKE2b-256 98e2ff4887080f157dabd8d1449193d5d5aa17a10910ca245b9b5626a3d73125

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 775.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d468f2363d3427be8d863f25c30dbc1f634b85d4b8405eba87ffe612e7f7cb40
MD5 f08476c7d0eca2425a2adbb40e896f80
BLAKE2b-256 9bd3f576632c8879bfb602f4c1d5a96e3ab52cfb48240322952ea79024a0915c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8f34ac36ed0791e54634afbae74d014d06a7d3918f6c7c8f5021ae4eb3c4b3b6
MD5 9322272785d3486d916be958fe5a5f31
BLAKE2b-256 b53ada13fda25aee3d0e759f6b195c8e33944cc7d30e4cfd9d13434b98146766

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 76e75889742eeb4a28c8b536091f6048a5254b9bbc21ada568a2bc2af5cd300c
MD5 9bb52487a8d6a1bd7a1f0f40097e8862
BLAKE2b-256 34ad82c725feaf266f9ff0a75a6a8e20be52bd2251d454e196aeeda9e7beadc0

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5e24e530ec422a7b42fdc1adbeb808fa1b027b77cee74d4a7797fdbc2cb080a0
MD5 241613ef1d325bf5be8c9829c7691e98
BLAKE2b-256 d4506f87804c4ff62d0c1e33f756819416709099817c99d25a874fc5f50c4987

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 15202d5472e2ac1a829905a842abfcaf990416f97201691e51708105464b7407
MD5 36a36e442daa8a8006094e9ec90f92b8
BLAKE2b-256 a257fb8a921f498629c372949672df9b951f58bea90d35a175905917166fcd87

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08bcd56a89b66cbb573040eb93122867081f12fa40968db07bc2e3e0cbbaff76
MD5 3b887619ca48ceb259a3ce7116bf7312
BLAKE2b-256 cede8c6186a0b3e0846eaca8ccb8b372c269f20d68148f5b48e953312fbf5eaf

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d462841fd4b968650f153322246ad404bba9b5fa249ea5d00bc19d2f892e71c
MD5 831ee687d1a4973f6651afbf641f662e
BLAKE2b-256 78ee64c76dbfcd11ca09e4dfd976f4ced9c3f68abc357c7ff7b6145d3d2a6622

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 775.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6e287ec7270d85d0a30285f3b310af6343bc8efdbf07a861df31b57daa89474c
MD5 b4f2031ba991596522cd0eed411fd2f5
BLAKE2b-256 a995b30824c6684b8851979ff82bcdd548f25a87c432053bb7979fbb96ddd74d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41958f10a038f58261ed575fc441167aaa815487520138e1e9daf2b1a5b387c4
MD5 f32e42874610361d2f9e7aba6da9c15f
BLAKE2b-256 5819d78742f43f57565d479a8e4d00a09786d17380026bc8eedc0ce9740dec15

See more details on using hashes here.

File details

Details for the file nfstream-6.5.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b31c027922c921d4b0ba26843ee7b49d08761249bed57c89df2e521cc779e27a
MD5 d864531b1b7f08a32e35e0538d69e8ef
BLAKE2b-256 4efd5683a7474da49b69c6ffde3b9b3ddc1d094fae9c7b55c47a0c5d488ef0fd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page