Skip to main content

easy data picker

Project description

nice-datapath User Guide


Talk is cheap. Show me the code

from datapath import value, register_pipe


import datapath


def concat(*args):
    return "".join(args)


def test_value():
    data = {
        "f1": "a",
        "f2": 2,
        "f3": {
            "f4": "b",
            "f5": 3,
            "f6": [
                "l1", "l2", "l3"
            ],
        },
        "f7": [
            {
                "f8": "f8-1",
                "f9": [1, 2, 3]
            },
            {
                "f8": "f8-2",
                "f9": [1, 2, 3]
            },
            {
                "f8": "f8-3",
                "f9": [1, 2, 3]
            }
        ],
        "f10": {
            "f11": [
                [{"f12": [1]}],
                [{"f12": [2]}],
                [{"f12": 3}],
            ]
        },
        "f13": '{"a": 1}',
        "f14": 0.01123,
        "f15": 0.01,
        "f16": 23.79
    }

    datapath.register_pipe("concat", concat)
    assert datapath.value(data, "f1") == "a"
    assert datapath.value(data, "f2") == 2
    assert datapath.value(data, "f2|str") == "2"
    assert datapath.value(data, "f3.f4") == "b"
    assert datapath.value(data, "f3.f5") == 3
    assert datapath.value(data, "f3.f5 | str  ") == "3"
    assert datapath.value(data, "f3.f6") == ["l1", "l2", "l3"]
    assert datapath.value(data, "f3.f6") == ["l1", "l2", "l3"]
    assert datapath.value(data, "f3.f6|jsondump") == '["l1", "l2", "l3"]'
    assert datapath.value(data, "f7.f8") == ["f8-1", "f8-2", "f8-3"]
    assert datapath.value(data, "f7.f9") == [[1, 2, 3], [1, 2, 3], [1, 2, 3]]
    assert datapath.value(data, "f10.f11.f12") == [[[1]], [[2]], [3]]
    assert datapath.value(data, "f13 | jsonload") == {"a": 1}
    assert datapath.value(data, "f14 | %") == "1.123%"
    assert datapath.value(data, "f14 | % 0") == "1%"
    assert datapath.value(data, "f14 | % 1") == "1.1%"
    assert datapath.value(data, "f14 | % 2") == "1.12%"
    assert datapath.value(data, "f14 | % 3") == "1.123%"
    assert datapath.value(data, "f14 | % 4") == "1.1230%"
    assert datapath.value(data, "f14 | % 5") == "1.12300%"
    assert datapath.value(data, "f15 | %") == "1%"
    assert datapath.value(data, "f16 | int") == 23
    assert datapath.value(data, "f16 | float") == 23.79
    assert datapath.value(data, "f16 | str | concat a b c") == "23.79abc"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nice-datapath-0.0.1.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

nice_datapath-0.0.1-py3-none-any.whl (2.9 kB view details)

Uploaded Python 3

File details

Details for the file nice-datapath-0.0.1.tar.gz.

File metadata

  • Download URL: nice-datapath-0.0.1.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.1

File hashes

Hashes for nice-datapath-0.0.1.tar.gz
Algorithm Hash digest
SHA256 14c10cd42a5801b69b60279c67733f38beecada19d83de7d243bb1bdd9a26559
MD5 541a635f7cddb7b61de816dc9bb3c4f1
BLAKE2b-256 f6c6def16d58fb6f72b27d7b9abfaf72695eff20b9754b1638704e68cb83ec75

See more details on using hashes here.

File details

Details for the file nice_datapath-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for nice_datapath-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7424112cf68deff63ed86758f655c8b9410c6193743940d3b6bda108e07cdee0
MD5 0c8d95372e6cd216b543dc2b4a203dfd
BLAKE2b-256 40906fa8c2575d9b45fa025d91a87adacecf6674f6ed31b301669f26763745b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page