Skip to main content
Help us improve Python packaging – donate today!

Statistical learning for neuroimaging in Python

Project Description

Travis Build Status AppVeyor Build Status

nilearn

Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

This work is made available by a community of people, amongst which the INRIA Parietal Project Team and the scikit-learn folks, in particular P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa, B. Thirion, M. Eickenberg, C. F. Gorgolewski, D. Bzdok, L. Esteve and B. Cipollini.

Dependencies

The required dependencies to use the software are:

  • Python >= 2.7,
  • setuptools
  • Numpy >= 1.6.1
  • SciPy >= 0.14
  • Scikit-learn >= 0.15
  • Nibabel >= 2.0.2

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 1.1.1 is required.

If you want to run the tests, you need nose >= 1.2.1 and coverage >= 3.6.

Install

First make sure you have installed all the dependencies listed above. Then you can install nilearn by running the following command in a command prompt:

pip install -U --user nilearn

More detailed instructions are available at http://nilearn.github.io/introduction.html#installation.

Development

Detailed instructions on how to contribute are available at http://nilearn.github.io/contributing.html

Release history Release notifications

This version
History Node

0.4.1

History Node

0.4.0

History Node

0.3.1

History Node

0.3.0

History Node

0.3.0b1

History Node

0.2.6

History Node

0.2.5.1

History Node

0.2.5

History Node

0.2.4

History Node

0.2.3

History Node

0.2.2

History Node

0.2.1

History Node

0.2.0

History Node

0.1.4.post1

History Node

0.1.4

History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1

History Node

0.1b1

History Node

0.1a1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
nilearn-0.4.1.tar.gz (894.1 kB) Copy SHA256 hash SHA256 Source None Mar 12, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page