Skip to main content

Statistical learning for neuroimaging in Python

Project description

Pypi Package PyPI - Python Version Github Actions Build Status Coverage Status https://img.shields.io/badge/code%20style-black-000000.svg https://zenodo.org/badge/DOI/10.5281/zenodo.8397156.svg Twitter Mastodon Discord

nilearn

Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive documentation & friendly community.

It supports general linear model (GLM) based analysis and leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

Install

Latest release

1. Setup a virtual environment

We recommend that you install nilearn in a virtual Python environment, either managed with the standard library venv or with conda (see miniconda for instance). Either way, create and activate a new python environment.

With venv:

python3 -m venv /<path_to_new_env>
source /<path_to_new_env>/bin/activate

Windows users should change the last line to \<path_to_new_env>\Scripts\activate.bat in order to activate their virtual environment.

With conda:

conda create -n nilearn python=3.9
conda activate nilearn

2. Install nilearn with pip

Execute the following command in the command prompt / terminal in the proper python environment:

python -m pip install -U nilearn

Development version

Please find all development setup instructions in the contribution guide.

Check installation

Try importing nilearn in a python / iPython session:

import nilearn

If no error is raised, you have installed nilearn correctly.

Drop-in Hours

The Nilearn team organizes regular online drop-in hours to answer questions, discuss feature requests, or have any Nilearn-related discussions. Nilearn drop-in hours occur every Wednesday from 4pm to 5pm UTC, and we make sure that at least one member of the core-developer team is available. These events are held on Jitsi Meet and are fully open, anyone is welcome to join! For more information and ways to engage with the Nilearn team see How to get help.

Dependencies

The required dependencies to use the software are listed in the file pyproject.toml.

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 3.3.0 is required.

Some plotting functions in Nilearn support both matplotlib and plotly as plotting engines. In order to use the plotly engine in these functions, you will need to install both plotly and kaleido, which can both be installed with pip and anaconda.

If you want to run the tests, you need pytest >= 6.0.0 and pytest-cov for coverage reporting.

Development

Detailed instructions on how to contribute are available at https://nilearn.github.io/stable/development.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nilearn-0.10.4.tar.gz (12.4 MB view hashes)

Uploaded Source

Built Distribution

nilearn-0.10.4-py3-none-any.whl (10.4 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page