Skip to main content

Statistical learning for neuroimaging in Python

Project description

Travis Build Status AppVeyor Build Status https://coveralls.io/repos/nilearn/nilearn/badge.svg?branch=master

nilearn

Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

This work is made available by a community of people, amongst which the INRIA Parietal Project Team and the scikit-learn folks, in particular P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa, B. Thirion, M. Eickenberg, C. F. Gorgolewski, D. Bzdok, L. Estève and B. Cipollini.

Dependencies

The required dependencies to use the software are:

  • Python >= 2.6,

  • setuptools

  • Numpy >= 1.6.1

  • SciPy >= 0.9

  • Scikit-learn >= 0.13 (Some examples require 0.14 to run)

  • Nibabel >= 1.1.0

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 1.1.1 is required.

If you want to run the tests, you need nose >= 1.2.1 and coverage >= 3.6.

Install

First make sure you have installed all the dependencies listed above. Then you can install nilearn by running the following command in a command prompt:

pip install -U --user nilearn

More detailed instructions are available at http://nilearn.github.io/introduction.html#installation.

Development

Code

GIT

You can check the latest sources with the command:

git clone git://github.com/nilearn/nilearn

or if you have write privileges:

git clone git@github.com:nilearn/nilearn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nilearn-0.2.1.tar.gz (728.6 kB view details)

Uploaded Source

Built Distributions

nilearn-0.2.1-py2.py3-none-any.whl (2.0 MB view details)

Uploaded Python 2 Python 3

nilearn-0.2.1-py2.7.egg (1.2 MB view details)

Uploaded Source

File details

Details for the file nilearn-0.2.1.tar.gz.

File metadata

  • Download URL: nilearn-0.2.1.tar.gz
  • Upload date:
  • Size: 728.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nilearn-0.2.1.tar.gz
Algorithm Hash digest
SHA256 396c45bc9d53a8518ab1aa59b66004ae3f2b0334b299b24f300d98570b5ff517
MD5 0af80e40b6eb84086f8f6107e305d4e0
BLAKE2b-256 614930b6ce3df2a8da0068e7f55c9d19a60a7d8bfc9d7ed2a9c5efbfafd16534

See more details on using hashes here.

File details

Details for the file nilearn-0.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nilearn-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7f538347c56384948781d5e1ef247e917bae38db9fcaffbca4ff3fca4a851e59
MD5 4f3890a7601651d14a3c1706a73f6287
BLAKE2b-256 def58f848ab9cc774b7f2107a27e38efee222b377249bc336754269e7447bff6

See more details on using hashes here.

File details

Details for the file nilearn-0.2.1-py2.7.egg.

File metadata

  • Download URL: nilearn-0.2.1-py2.7.egg
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nilearn-0.2.1-py2.7.egg
Algorithm Hash digest
SHA256 80c1d55e75408d757d8be39ec4145b5a459136e7bb532df917f4ab62cc9cf8fc
MD5 deca8ada46edfe84f53c58301a34684c
BLAKE2b-256 06f03249065f341b41a50807f8b008e74c9c24e940f5aeeca986b070cdf6f55d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page