A small machine learning package
Project description
This is a Python ML librabry like scikit-learn
You can create your ML model or use some ML algorithms on your project
Example: Logistic Regression
Read csv file and slip data into training and test data
import pandas as pd
df = pd.read_csv('Data_for_UCI_named.csv', header=0)
df['stabf'] = df['stabf'].map({'unstable': 0, 'stable': 1})
Y = df['stabf'].values
# sometimes it's needed to reshape data
X = df.drop(['stabf'], axis=1).values
X_train = X[:9000]
Y_train = Y[:9000]
X_test = X[9000:]
Y_test = Y[9000:]
Let’s use our library
# call the LogisticRegression class
from nista_learn.regressions import LinearRegression, LogisticRegression
log_reg = LogisticRegression()
# fitting data
log_reg.fit(X_train, Y_train, iterations=200000, learning_rate=0.25, show=True)
# predict a small dataset
y_pred = log_reg.predict(X_test[20:28])
print('--- small value ---')
print(Y_test[20:28])
print('--- predicted data ---')
print(y_pred)
# plotting the cost function
log_reg.plot_cost()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nista_learn-0.0.4.tar.gz
(2.9 kB
view details)
File details
Details for the file nista_learn-0.0.4.tar.gz.
File metadata
- Download URL: nista_learn-0.0.4.tar.gz
- Upload date:
- Size: 2.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2b213748deab6e044773bbe9cb8b9c9605504c2f0756c1f42131ae8f4c67a729
|
|
| MD5 |
3806fcc4a900fabfc623fb7fcd16bbac
|
|
| BLAKE2b-256 |
c30fa1bb304374cf276f3e1b59118ca4d468956aa660420bd1a94f5d2e138e38
|