Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

save and load a structured collection of data as folder

Project description

Basically, noformat treats a folder structure as a single dict that contains data and attributes. Pandas dataframe and numpy array can be used for dict values.

import numpy as np
import pandas as pd
from noformat import File
data = File('data/temp', 'w-')
data['first_array'] = np.random.randn(10, 10)
data['second_array'] = pd.DataFrame(data=np.random.randn(10, 4), columns=['1', '2', '3', '4'])

Files will be automatically saved upon object destruction. And loaded later

read_data = File('data/temp', 'w+')
assert(read_data['first_array'].shape == (10, 10))

Attributes will be saved in ‘attributes.json’ files

read_data = File('data/temp', 'w+')
read_data.attrs['first_attribute'] = 64

This will create a folder with the following structure

data/temp/
|   first_array.npy
|   second_array.msg
└───attributes.json

Logging files for the data can be included: 1. in json format with .log extension 2. in cell array format with .mat extension It can only be written in the first type

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for noformat, version 0.1.4
Filename, size File type Python version Upload date Hashes
Filename, size noformat-0.1.4-py3-none-any.whl (6.5 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size noformat-0.1.4.tar.gz (4.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page