Project Description
## np – create numpy arrays as `np[1,3,5]`, and more

## Getting Started

### Requirements

### Installation

## Basic Usage

## Changelog

### 0.2.0 (2016-03-29)

### 0.1.4 (2016-01-26)

### 0.1.2 (2015-06-17)

### 0.1.1 (2015-06-17)

### 0.1.0 (2015-06-17)

Release History
## Release History

Download Files
## Download Files

`np` = `numpy` + handy tools

For the numerical Python package `numpy` itself, see http://www.numpy.org/.

The idea of `np` is to provide a way of creating numpy arrays with a compact syntax and without an explicit function call. Making the module name `np` subscriptable, while still keeping it essentially an alias for numpy, does this in a clean way.

Any feedback is very welcome: koos.zevenhoven@aalto.fi.

- Works best with Python 3.5+ (Tested also with 3.4 and 2.7)
- numpy (you should install this using your python package manager like conda or pip)

np can be installed with pip:

$ pip install np

or directly from the source code:

```
$ git clone https://github.com/k7hoven/np.git
$ cd np
$ python setup.py install
```

Even before the np tool, a popular style of using `numpy` has been to import it as `np`:

>>> import numpy as np >>> my_array = np.array([3, 4, 5]) >>> my_2d_array = np.array([[1, 2], [3, 4]])

The most important feature of `np` is to make the creation of arrays less verbose, while everything else works as before. The above code becomes:

>>> import np >>> my_array = np[3, 4, 5] >>> my_2d_array = np[[1, 2], [3, 4]]

As you can see from the above example, you can create numpy arrays by subscripting the np module. Since most people would have numpy imported as `np` anyway, this requires no additional names to clutter the namespace. Also, the syntax `np[1,2,3]` resembles the syntax for `bytes` literals, `b"asd"`.

The np package also provides a convenient way of ensuring something is a numpy array, that is, a shortcut to `numpy.asanyarray()`:

>>> import np >>> mylist = [1, 3, 5] >>> mylist + [7, 9, 11] [1, 3, 5, 7, 9, 11] >>> np(mylist) + [7, 9, 11] array([8, 12, 16])

As an experimental feature, there are also shortcuts for giving the arrays a specific data type (numpy dtype):

>>> np[1, 2, 3] array([1, 2, 3]) >>> np.f[1, 2, 3] array([ 1., 2., 3.]) >>> np.f2[1, 2, 3] array([ 1., 2., 3.], dtype=float16) >>> np.u4[1, 2, 3] array([1, 2, 3], dtype=uint32) >>> np.c[1, 2, 3] array([ 1.+0.j, 2.+0.j, 3.+0.j])

- Quick types are now np.i, np.f, np.u, np.c, or with the number of /bytes/ per value appended: np.i4 -> int32, np.u2 -> uint16, np.c16 -> complex128, … (still somewhat experimental)
- Removed the old np.i8 and np.ui8 which represented 8-bit types, which was inconsistent with short numpy dtype names which correspond to numbers of bytes. The rest of the bit-based shortcuts are deprecated and will be removed later.
- Handle Python versions >=3.5 better; now even previously imported plain numpy module objects become the exact same object as np.
- Tests for all np functionality
- Ridiculously slow tests that runs the numpy test suite several times to make sure that np does not affect numpy functionality.
- Remove numpy from requirements and give a meaningful error instead if numpy is missing (i.e. install it using your package manager like conda or pip)
- Better reprs for subscriptable array creator objects and the np/numpy module.

- Bug fix

- Improved experimental dtype shortcuts: np.f[1,2], np.i32[1,2], etc.

- PyPI-friendly readme

- First distributable version
- Easy arrays such as np[[1,2],[3,4]]
- Shortcut for np.asanyarray(obj): np(obj)
- Experimental dtype shortcuts: np.f64[[1,2],[3,4]]

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help | Version | File Type | Upload Date |
---|---|---|---|

np-0.2.0.tar.gz (5.2 kB) Copy SHA256 Checksum SHA256 | – | Source | Mar 28, 2016 |