Skip to main content

NSMA: A Memetic Procedure for Global Multi-Objective Optimization.

Project description

Python 3.10 license DOI

Alt Text

NSMA: A Memetic Procedure for Global Multi-Objective Optimization

Implementation of the NSMA Algorithm proposed in

Lapucci, M., Mansueto, P. & Schoen, F. A memetic procedure for global multi-objective optimization. Math. Prog. Comp. (2022).

If you have used our code for research purposes, please cite the publication mentioned above. For the sake of simplicity, we provide the Bibtex format:

@Article{Lapucci2022,
    author={Lapucci, Matteo and Mansueto, Pierluigi and Schoen, Fabio},
    title={A memetic procedure for global multi-objective optimization},
    journal={Mathematical Programming Computation},
    year={2022},
    month={Nov},
    day={22},
    issn={1867-2957},
    doi={10.1007/s12532-022-00231-3},
    url={https://doi.org/10.1007/s12532-022-00231-3}
}

Main Dependencies

  • python v3.9
  • pip v22.2.2
  • numpy v1.22.3
  • scipy v1.7.3
  • matplotlib Windows: v3.5.3, Linux: v3.5.2, MacOSX: v3.6.1
  • tensorflow Windows: v2.9.1, Linux: v2.8.2, MacOSX: v2.10.0
  • gurobipy v9.5.2
  • progressbar2 v4.2.0

Gurobi Optimizer

In order to run some parts of the code, the Gurobi Optimizer needs to be installed and, in addition, a valid Gurobi licence is required. However, the employment of the Gurobi Optimizer is not mandatory to execute the code. Indeed, we provide alternative scripts where the HiGHS dual simplex solver implementation by SciPy is used.

Usage

We refer to the code documentation and the related GitHub repository for all the information.

An usage example could be the following:

import tensorflow as tf
from nsma.algorithms.memetic.nsma import NSMA
from nsma.problems.man.man_instance import MAN1
from nsma.general_utils.pareto_utils import points_initialization

tf.compat.v1.disable_eager_execution()

session = tf.compat.v1.Session()
with session.as_default():
    algorithm = NSMA(max_iter=None, 
                     max_time=2, 
                     max_f_evals=None, 
                     verbose=True, 
                     verbose_interspace=10, 
                     plot_pareto_front=True, 
                     plot_pareto_solutions=False, 
                     plot_dpi=100, 
                     pop_size=100, 
                     crossover_probability=0.9, 
                     crossover_eta=20, 
                     mutation_eta=20, 
                     shift=10, 
                     crowding_quantile=0.9, 
                     n_opt=5, 
                     FMOPG_max_iter=5, 
                     theta_for_stationarity=-1e-10, 
                     theta_tol=-1e-1, 
                     theta_dec_factor=10**(-0.5), 
                     gurobi=True, 
                     gurobi_method=1, 
                     gurobi_verbose=False, 
                     ALS_alpha_0=1, 
                     ALS_delta=0.5, 
                     ALS_beta=10**-4, 
                     ALS_min_alpha=1e-7)
    problem = MAN1(n=5)
    initial_p_list, initial_f_list, n_initial_points = points_initialization(problem, 'hyper', 5)
    p_list, f_list, elapsed_time = algorithm.search(initial_p_list, initial_f_list, problem)

Contact

If you have any question, feel free to contact me:

Pierluigi Mansueto
Global Optimization Laboratory (GOL)
University of Florence
Email: pierluigi dot mansueto at unifi dot it

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nsma-1.0.14.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

nsma-1.0.14-py3-none-any.whl (57.0 kB view details)

Uploaded Python 3

File details

Details for the file nsma-1.0.14.tar.gz.

File metadata

  • Download URL: nsma-1.0.14.tar.gz
  • Upload date:
  • Size: 38.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.3

File hashes

Hashes for nsma-1.0.14.tar.gz
Algorithm Hash digest
SHA256 ab2218eb57f1a5104124dd9b72500d892f8c57bd824cdf5996b5139eb30bab48
MD5 d18bd864d1244de3a9a1527bbb0ab4ed
BLAKE2b-256 6c42d1178d673600f520ddcb6b7db1a11f86892b7925216780b54ed35e5e9564

See more details on using hashes here.

File details

Details for the file nsma-1.0.14-py3-none-any.whl.

File metadata

  • Download URL: nsma-1.0.14-py3-none-any.whl
  • Upload date:
  • Size: 57.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.3

File hashes

Hashes for nsma-1.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 3321e94ad0655bac8c15264af5ae79cf5f1ff912493833d615f0ce87316f8c40
MD5 9bad435426239d8b1997dd030425f8c9
BLAKE2b-256 259706b8be7c05a153bd01a0129aec27fde2ad8027c1d40526b3afdf0f2b2489

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page