Skip to main content

compiling Python code using LLVM

Project description

Gitter Discourse Zenodo DOI

A Just-In-Time Compiler for Numerical Functions in Python

Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaconda, Inc. It uses the LLVM compiler project to generate machine code from Python syntax.

Numba can compile a large subset of numerically-focused Python, including many NumPy functions. Additionally, Numba has support for automatic parallelization of loops, generation of GPU-accelerated code, and creation of ufuncs and C callbacks.

For more information about Numba, see the Numba homepage: https://numba.pydata.org

Supported Platforms

  • Operating systems and CPUs:

    • Linux: x86 (32-bit), x86_64, ppc64le (POWER8 and 9), ARMv7 (32-bit), ARMv8 (64-bit).

    • Windows: x86, x86_64.

    • macOS: x86_64, (M1/Arm64, unofficial support only).

    • *BSD: (unofficial support only).

  • (Optional) Accelerators and GPUs:

    • NVIDIA GPUs (Kepler architecture or later) via CUDA driver on Linux, Windows, macOS (< 10.14).

Dependencies

  • Python versions: 3.7-3.9

  • llvmlite 0.37.*

  • NumPy >=1.17,<1.21 (can build with 1.11 for ABI compatibility).

Optionally:

  • SciPy >=1.0.0 (for numpy.linalg support).

Installing

The easiest way to install Numba and get updates is by using the Anaconda Distribution: https://www.anaconda.com/download

$ conda install numba

For more options, see the Installation Guide: https://numba.readthedocs.io/en/stable/user/installing.html

Documentation

https://numba.readthedocs.io/en/stable/index.html

Mailing Lists

Numba has a discourse forum for discussions:

Some old mailing list archives are at:

Continuous Integration

Azure Pipelines

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numba-0.54.1.tar.gz (2.2 MB view details)

Uploaded Source

Built Distributions

numba-0.54.1-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9Windows x86-64

numba-0.54.1-cp39-cp39-win32.whl (2.3 MB view details)

Uploaded CPython 3.9Windows x86

numba-0.54.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

numba-0.54.1-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

numba-0.54.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

numba-0.54.1-cp39-cp39-macosx_10_14_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

numba-0.54.1-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8Windows x86-64

numba-0.54.1-cp38-cp38-win32.whl (2.3 MB view details)

Uploaded CPython 3.8Windows x86

numba-0.54.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

numba-0.54.1-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

numba-0.54.1-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

numba-0.54.1-cp38-cp38-macosx_10_14_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8macOS 10.14+ x86-64

numba-0.54.1-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

numba-0.54.1-cp37-cp37m-win32.whl (2.3 MB view details)

Uploaded CPython 3.7mWindows x86

numba-0.54.1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

numba-0.54.1-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl (3.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686

numba-0.54.1-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

numba-0.54.1-cp37-cp37m-macosx_10_14_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7mmacOS 10.14+ x86-64

File details

Details for the file numba-0.54.1.tar.gz.

File metadata

  • Download URL: numba-0.54.1.tar.gz
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1.tar.gz
Algorithm Hash digest
SHA256 f9dfc803c864edcc2381219b800abf366793400aea55e26d4d5b7d953e14f43f
MD5 bd995c9b692fbaa0e23773af7e5183f3
BLAKE2b-256 d39305c88fc9f17655a93428f49646d1086c8b2b98e8531033f13f3fe464fae5

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numba-0.54.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 884ad2cdebb6f8bcc7b5ec70e56c9acdb8456482c49cea12273d34709dfc2c9c
MD5 e71b536b9e97aef513e81e2886d6649c
BLAKE2b-256 97fc9382e1dfe536b922bc1c38020402ec0614e9cfa390aac867ef9089164f37

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numba-0.54.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fe4f0c881dbaac0c818dafc80e348edf8d8f1022278c368390ca20e92ed381cc
MD5 1f93d5ec72484f2329eae8895da71c80
BLAKE2b-256 5d810925c192f2f684d1cce0d410601bfa36136254065bf00466cbd0bc0211f8

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.54.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 606ebf5b0474d89f96a2e1354f0349e985c3897c2989b78e47b095d67434cf4c
MD5 06a73445444df7e79374ab030908affd
BLAKE2b-256 b5bd87698d728d15c09439ec369f4b107032dc3b00ce37ca5081ca73875e53c6

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl.

File metadata

  • Download URL: numba-0.54.1-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 5492ffa42425b7dc783e4376dfc07617c751d7d087d64fe8c2e7944038e35261
MD5 f73e4a046e5322d724c1b68b942ca5d2
BLAKE2b-256 b9ec3aaf5aa50127b6147a491baaddf8d3950e2675dddebb21ae0c2e6d8d8912

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for numba-0.54.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 0354df1fcfa9d9d8df3b63780fae408c8f23c474d71a4e929f4c5b44f2c9ce5a
MD5 97a30b4652e4784e1579b57765bd3074
BLAKE2b-256 b23e41981c2b26da12d34916b5a5d597ca7e59d87dae60bf17bdb537b6c08f71

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numba-0.54.1-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7da918aed4790a4ce6682061971e6248e7422dd5618dcac8054d4a47955182dc
MD5 0a9a4d8cae5933ff3d126309275088de
BLAKE2b-256 ca5ae0b82fa00286b931342501184f34799f4fddbb0f84798743516d7adb5b27

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numba-0.54.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c2e877a33f6920365e96ad088023f786a4b1ce44a7e772763cc02c55f49614dd
MD5 f4df2b5d7118a36fee4b6a4f22ed9162
BLAKE2b-256 7fa8b91e3e7a60fc9bcb9f1133475e44e375f2e14b73e6b96f7e6a3e6f2303ac

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: numba-0.54.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b385451355a9023c9611400c7c6d4088f5781ed11b104b5d690f0ad65b142860
MD5 3fb6005ad2deba34656de942cdeb3c72
BLAKE2b-256 338bc9371162e19ede04ca04699e33729104d894836ff1c15ecb540641a04a08

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.54.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ec7033409e66158e9f2b83c22d887fda7949bf2ac652bbbdcbc006b590c37339
MD5 9f652e3f1760319d3bec0ea4c41da9c4
BLAKE2b-256 2b74a2d5d11886f416fa32f83cab172bcea6d3f7cd9fc0b22382bd9c08f6233e

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl.

File metadata

  • Download URL: numba-0.54.1-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 5239bf413a9d3c7fad839400d5082032635511c3b7058e17835c7c4090f223ed
MD5 d3c2900269b7cfd7bb3fbffcfb8fed49
BLAKE2b-256 6bfd50f91c51f66057f52c4264979d49e93a3f740281c73519702a8a505115cd

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for numba-0.54.1-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 64451b4fd2437ebb7bbcff72133b28575cb8464eb3f10ccd88c70a3792e6de0a
MD5 94caf185412f81d418f888e2c50aeab9
BLAKE2b-256 9046c9ebebc0520eed8a894443aa81e5483ec5bfb63b02cb09dddb89e1a4f4dc

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numba-0.54.1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0f1c2c23c4e05cbed19f7a15710a25e71ab818ba7cd0bf66572bacd221721f22
MD5 87ecf51587007864979f8744a5a5a04e
BLAKE2b-256 22b96c749ba37de9b66238d37854a662aee9312bb340a7c93bcbb122847e78b1

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numba-0.54.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d0799e7e8640a31d9567a032a6e046d797356afb3e812e0a0f97e6e74ded7e35
MD5 bb09dd916dc112764c31a97e79bc7998
BLAKE2b-256 d9b4556d690762877c72e1c4d1d0d9a2531cf0a24c9a805914010c2e9575f773

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numba-0.54.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1380429f4a3f73440aae093a058713c780fdc14930b3070c883bc1737e8711b0
MD5 34c42284e0de011fece08615c9434f22
BLAKE2b-256 10242cf296c75a9005cf44795f7ac84704b2ba547038e41414345f51a7f8149f

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.54.1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ef4d27ee039007510c3de9c42fd6bb57051661ceeca4a9a6244b642a742632a0
MD5 c8c55e327d0a5688c7f7feb1a2c2fab7
BLAKE2b-256 cac1df587822f29e758b7619c652906a586ccc95ef85a52072e210baf82de07b

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl.

File metadata

  • Download URL: numba-0.54.1-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
Algorithm Hash digest
SHA256 77479e79b6840e3eb5e0613bbdbb4be8f4b9c4130bafdf6ac39b9507ea742f15
MD5 d29a178388d36b449aa105ac0d044b6c
BLAKE2b-256 90f57d7b725b605df97c6185b91ddc3c278b3e40b5c00eaee036c6bcc8ada989

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for numba-0.54.1-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 b657cece0b069cd4361a6d25aaae2e9e9df9e65abfa63f09345352fbb1069a11
MD5 32c384d7d9375be074fd1fb452be2d33
BLAKE2b-256 b62bd436946331c3a6bff80d3eb498cd3e67a5221f3f598285edd4a3898b999e

See more details on using hashes here.

File details

Details for the file numba-0.54.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numba-0.54.1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for numba-0.54.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c36e50271146c3c33f10111488307a6aa75416aa53384709b037599426a967ea
MD5 f0467f8ed65a7e8877015210339c7f0d
BLAKE2b-256 4a37a5abd4836daf439e7eb99958671ab8a9187f8293e019c23c684c1502fb7f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page