Skip to main content

'Solves automatic numerical differentiation problems in one or more variables.'

Project description

Numdifftools

https://badge.fury.io/py/numdifftools.png https://travis-ci.org/pbrod/numdifftools.svg?branch=master https://readthedocs.org/projects/pip/badge/?version=latest Code Health https://coveralls.io/repos/pbrod/numdifftools/badge.svg?branch=master https://img.shields.io/pypi/pyversions/numdifftools.svg http://depsy.org/api/package/pypi/Numdifftools/badge.svg

Numdifftools is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more variables. Finite differences are used in an adaptive manner, coupled with a Richardson extrapolation methodology to provide a maximally accurate result. The user can configure many options like; changing the order of the method or the extrapolation, even allowing the user to specify whether complex-step, central, forward or backward differences are used.

The methods provided are:

  • Derivative: Compute the derivatives of order 1 through 10 on any scalar function.

  • Gradient: Compute the gradient vector of a scalar function of one or more variables.

  • Jacobian: Compute the Jacobian matrix of a vector valued function of one or more variables.

  • Hessian: Compute the Hessian matrix of all 2nd partial derivatives of a scalar function of one or more variables.

  • Hessdiag: Compute only the diagonal elements of the Hessian matrix

All of these methods also produce error estimates on the result.

Numdifftools also provide an easy to use interface to derivatives calculated with in _AlgoPy. Algopy stands for Algorithmic Differentiation in Python. The purpose of AlgoPy is the evaluation of higher-order derivatives in the forward and reverse mode of Algorithmic Differentiation (AD) of functions that are implemented as Python programs.

Getting Started

Visualize high order derivatives of the tanh function

>>> import numpy as np
>>> import numdifftools as nd
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, 100)
>>> for i in range(10):
...    df = Derivative(np.tanh, n=i)
...    y = df(x)
...    plt.plot(x, y/np.abs(y).max())
>>> plt.show()
https://raw.githubusercontent.com/pbrod/numdifftools/master/examples/fun.png

Compute 1’st and 2’nd derivative of exp(x), at x == 1:

>>> fd = nd.Derivative(np.exp)        # 1'st derivative
>>> fdd = nd.Derivative(np.exp, n=2)  # 2'nd derivative
>>> np.allclose(fd(1), 2.7182818284590424)
True
>>> np.allclose(fdd(1), 2.7182818284590424)
True

Nonlinear least squares:

>>> xdata = np.reshape(np.arange(0,1,0.1),(-1,1))
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> Jfun = nd.Jacobian(fun)
>>> np.allclose(np.abs(Jfun([1,2,0.75])), 0) # should be numerically zero
True

Compute gradient of sum(x**2):

>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> dfun([1,2,3])
array([ 2.,  4.,  6.])

Compute the same with the easy to use interface to AlgoPy:

>>> import numdifftools.nd_algopy as nda
>>> import numpy as np
>>> fd = nda.Derivative(np.exp)        # 1'st derivative
>>> fdd = nda.Derivative(np.exp, n=2)  # 2'nd derivative
>>> np.allclose(fd(1), 2.7182818284590424)
True
>>> np.allclose(fdd(1), 2.7182818284590424)
True

Nonlinear least squares:

>>> xdata = np.reshape(np.arange(0,1,0.1),(-1,1))
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> Jfun = nda.Jacobian(fun, method='reverse')
>>> np.allclose(np.abs(Jfun([1,2,0.75])), 0) # should be numerically zero
True

Compute gradient of sum(x**2):

>>> fun = lambda x: np.sum(x**2)
>>> dfun = nda.Gradient(fun)
>>> dfun([1,2,3])
array([ 2.,  4.,  6.])

See also

scipy.misc.derivative

Documentation and code

Numdifftools works on Python 2.7+ and Python 3.0+.

Official releases available at: http://pypi.python.org/pypi/numdifftools

https://badge.fury.io/py/numdifftools.png

Official documentation available at: http://numdifftools.readthedocs.org/

https://readthedocs.org/projects/pip/badge/?version=latest

Bleeding edge: https://github.com/pbrod/numdifftools.

Installation and upgrade:

with pip

$ pip install numdifftools

with conda

$ conda install -c https://conda.anaconda.org/pbrod numdifftools

with easy_install

$ easy_install numdifftools

or

$ easy_install upgrade numdifftools

to upgrade to the newest version

Unit tests

To test if the toolbox is working paste the following in an interactive python session:

import numdifftools as nd
nd.test(coverage=True, doctests=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numdifftools-0.9.14.zip (350.1 kB view details)

Uploaded Source

Built Distribution

numdifftools-0.9.14-py2.py3-none-any.whl (2.4 MB view details)

Uploaded Python 2Python 3

File details

Details for the file numdifftools-0.9.14.zip.

File metadata

  • Download URL: numdifftools-0.9.14.zip
  • Upload date:
  • Size: 350.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numdifftools-0.9.14.zip
Algorithm Hash digest
SHA256 8b17629fa9877f19517014095b12d7145f8cd5d9568421e202d777c97d9f04e4
MD5 04add9a62433466923764d9ef501eeb5
BLAKE2b-256 1afe42c77ce9b6fe611b293d4e23be1a7af6142594ec02eec8acde0d73aa67d3

See more details on using hashes here.

File details

Details for the file numdifftools-0.9.14-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for numdifftools-0.9.14-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0b5044f572dfad945253a7448a820505f4d37182bef5a31668911800eb1ad605
MD5 934528eae7558d4b194eddcef8ff58cf
BLAKE2b-256 365a5f362a69c1d7b9506a3c2285fab751e8e309ec922efb60083c35908ce2e3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page