Skip to main content

A fast python library for finding both min and max value in a NumPy array

Project description

numpy-minmax: a fast function for finding the minimum and maximum value in a NumPy array

NumPy lacked an optimized minmax function, so we wrote our own. At Nomono, we use it for audio processing, but it can be applied any kind of float32 ndarray.

  • Written in C and takes advantage of AVX/AVX512 for speed
  • Roughly 2.3x speedup compared to the numpy amin+amax equivalent (tested on Intel CPU with numpy 1.24-1.26)
  • The fast implementation is tailored for float32 arrays that are C-contiguous, F-contiguous or 1D strided. Strided arrays with ndim >= 2 get processed with numpy.amin and numpy.amax, so no perf gain there. There is also a fast implementation for contiguous int16 arrays.

Installation

PyPI version python 3.9, 3.10, 3.11, 3.12, 3.13 os: Linux, macOS, Windows

$ pip install numpy-minmax

Usage

import numpy_minmax
import numpy as np

arr = np.arange(1337, dtype=np.float32)
min_val, max_val = numpy_minmax.minmax(arr)  # 0.0, 1336.0

Changelog

[0.5.0] - 2025-06-28

Added

  • Add support for Python 3.13

For the complete changelog, go to CHANGELOG.md

Development

  • Install dev/build/test dependencies as denoted in pyproject.toml
  • CC=clang pip install -e .
  • pytest

Running benchmarks

  • Install diplib pip install diplib
  • python scripts/perf_benchmark.py

Acknowledgements

This library is maintained/backed by Nomono, a Norwegian audio AI startup.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy_minmax-0.5.0.tar.gz (13.6 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numpy_minmax-0.5.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

numpy_minmax-0.5.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_minmax-0.5.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

numpy_minmax-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

numpy_minmax-0.5.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_minmax-0.5.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

numpy_minmax-0.5.0-cp313-cp313-win_amd64.whl (14.6 kB view details)

Uploaded CPython 3.13Windows x86-64

numpy_minmax-0.5.0-cp313-cp313-musllinux_1_2_x86_64.whl (27.9 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numpy_minmax-0.5.0-cp313-cp313-musllinux_1_2_aarch64.whl (21.5 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numpy_minmax-0.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (22.1 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

numpy_minmax-0.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.4 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_minmax-0.5.0-cp313-cp313-macosx_11_0_arm64.whl (12.5 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numpy_minmax-0.5.0-cp312-cp312-win_amd64.whl (14.6 kB view details)

Uploaded CPython 3.12Windows x86-64

numpy_minmax-0.5.0-cp312-cp312-musllinux_1_2_x86_64.whl (27.9 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numpy_minmax-0.5.0-cp312-cp312-musllinux_1_2_aarch64.whl (21.5 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numpy_minmax-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (22.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

numpy_minmax-0.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.5 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_minmax-0.5.0-cp312-cp312-macosx_11_0_arm64.whl (12.5 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numpy_minmax-0.5.0-cp311-cp311-win_amd64.whl (14.6 kB view details)

Uploaded CPython 3.11Windows x86-64

numpy_minmax-0.5.0-cp311-cp311-musllinux_1_2_x86_64.whl (27.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numpy_minmax-0.5.0-cp311-cp311-musllinux_1_2_aarch64.whl (21.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numpy_minmax-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (21.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

numpy_minmax-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_minmax-0.5.0-cp311-cp311-macosx_11_0_arm64.whl (12.5 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numpy_minmax-0.5.0-cp39-cp39-win_amd64.whl (14.6 kB view details)

Uploaded CPython 3.9Windows x86-64

numpy_minmax-0.5.0-cp39-cp39-musllinux_1_2_x86_64.whl (27.6 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

numpy_minmax-0.5.0-cp39-cp39-musllinux_1_2_aarch64.whl (21.3 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

numpy_minmax-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (21.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

numpy_minmax-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_minmax-0.5.0-cp39-cp39-macosx_11_0_arm64.whl (12.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file numpy_minmax-0.5.0.tar.gz.

File metadata

  • Download URL: numpy_minmax-0.5.0.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.19

File hashes

Hashes for numpy_minmax-0.5.0.tar.gz
Algorithm Hash digest
SHA256 5c3187000e8160f325ae1f6f1431a13c3ae4b9b14074a01641e91f54e81c0882
MD5 dd83486f4d5cc5c128bf014c33f7ea14
BLAKE2b-256 551020af1e53e7cecc592f204cb96f472daf50af51decd589de241fc3d578cf3

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7f039036320353319e8046708b01bd946ffaed5dcf87ce0e2e8c2fe9d1a4f86
MD5 b7a60d667fcb98d46de44ded1b5609ac
BLAKE2b-256 b45eb4a6f250dd493f1c764a1a1772b805a2bd2b04dfe558b839fdb4866ba5b4

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3763c64d1caca70e63464185e0835f6883987cd743f3418b85a7241bc51d3b89
MD5 bb26b052ad587ceca56ddcf81f7b194e
BLAKE2b-256 5d06287db62c3e254b90eb6430135b21efe807c5b65bf446a1cd1c10b8a0e47c

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d71d915a35170424538f39027dd1972abeb2f26abf382d1a1a80402133f7afb
MD5 f571a82354bb6744af4852c642ccfe57
BLAKE2b-256 cf98f51382d824483c4cfe8b45faa62ae73c07e6c65881c69c366884fdcfb041

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7eaeb926e2b2f9276574ae51e64621097363bee45e4731f3b61053520d4cf9d
MD5 72f8a2a7af6ef8424b658bc9b3730ef1
BLAKE2b-256 7fcb86701e3b6e4cb763953bb428284e6896f34412103e294bc7dcc9b0835990

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6dff0b89e2fa244afce6ade878e84bde1cc87e77eb3d45265062e9360c3b8cd
MD5 7af2c9eccb4860b98018ee0a226c3dee
BLAKE2b-256 8b77405473ce41d0df4b2a6ce34f7fc5f120c02a1f03d7b8e5d041756922cac7

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce827a95f3d027bb07517a8e323d6740b506a90925bc8b6d779f4693d0cd4e55
MD5 0daa9b0afb2f039bee39ec997829ffe7
BLAKE2b-256 708b0a6761ece2d12bcf4c7c48ad32b84c73163ede018c3b7dae4f74dabf082b

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 1c7a486fe51d9246ed7f45c71fa4083ca8daf46b0523c50581f681a1aa7bbfd7
MD5 3cff149beed913c24aebbe9baef53d62
BLAKE2b-256 eac8777f544d31ea27b9a626d7833991fe151e4b9e52efb6af1cfa4ab956be75

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6b1abb3db80468920ccde73959108929797efb84f5e09d960c592219f576ad44
MD5 935215489a4c431c7543093df0cc6b0c
BLAKE2b-256 d367d678596b04ddeca20d67609e7411a063b7565f99103b82a6f7bccb23c4ae

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 edae1d7ccb818ff8c13c1be19f1e826049c3b414e6fd094b298e6dc74423769e
MD5 a74c13bd6a80dc94609253f423e38cac
BLAKE2b-256 856cf4cfab20993050b2eab3dac6ecf0d137bbc4d7267767de91b3fe2882fedc

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9f1f830a2443272d2be3b694ac58e7b44dfebb992fef5a917173b365d62d211
MD5 bfd1186fd8a0e227b7ed1c9a3b2aacdf
BLAKE2b-256 365e65d9ff6d9930a577b81badbacea8a853cb2f8fba07bad3f50589116c6185

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b3ec1d4a5898d8d2030db6e836e60f11cf98cb963d081b011a778b5775d0574
MD5 014ba39f8b58d34ee23a53bd1520ad0c
BLAKE2b-256 b47c617a345568928ae907fb936768abfcaf428759d08032c10deef11ec4054a

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 605eb219c0f6455dfed5f492b506e7f52a2bd428d6e7271f1944171128e52fe6
MD5 6cca191d29df8850b7d47f5d866045f8
BLAKE2b-256 d1ccbdfe3b92b663eda29d27b7eda8a1abc608062f6f31a7f599efa0dccddea5

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 32c6f8e48d958fe4f242d18e819956fd6ef18f162be4a0cdb989342af0635e17
MD5 898fc96eaf36e162957311298025d615
BLAKE2b-256 58152ea3d004d2a7673d44db2d4298c0c6a047cc3c4477dc2995855f2c3f8693

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7fffd546ac119f5446073378d945e1459658eef7af2a4d1103e581edac2c185d
MD5 cf4130d4506844a38ca86acaf2e1428f
BLAKE2b-256 7b0909976ed7cff40ec4dd69754cc35e0ec540cccfefdbebb6a6c1e5a2ec8031

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 178bba671443130ad986c7d3d34061923811ec1e75ee1132fffb1a8f98a5b192
MD5 0240b0c59c99dc9d632ab2d72be99cbf
BLAKE2b-256 ff9d2cfefb09e73bb29e62febeab0732e0755153578cb1f387ce39296b71279d

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5648045b274b52c68dbccacce998ba41d410a96b03e24ac1c42d054a9855edf5
MD5 9fadeae94375f87abdfb5e5a7c8d028b
BLAKE2b-256 d6bfaaa4b83303342db543837fae8ca0ca251eed3f350509553a2cd0992245c1

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6a19b6a06dd5d8e96b3080ce658031c77fa3e8f0845705dcc0107196e114333
MD5 d9ccf49d1539db3ae2220755a0fb71ae
BLAKE2b-256 898d4eb7c5e759e439e1b8afef54b40ea2171685ffe8c7adf5087a633fae40e2

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83569e7260dc49c7f68bae774cf87bc86140da09b8353ff0566305f5958e5de6
MD5 a9a415a0b209379bdcb6007085f3a00d
BLAKE2b-256 65c822eabef504e0eca2f5afaabd0e72dad8bc6dadfb095be682f1af1adbf42d

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 05bbc154b2aebb31057b6c5e30f6e426e862acbb59eeade1b06502f07fc786f8
MD5 4f69611563edc4ea281e31fa2a680923
BLAKE2b-256 4fd27555c4a6923669c54c41fbbb8489dfa61b154e97757f1b260901485cb95d

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4679bcf902e37ffbe4c690ce139eebef4c2943ac7435224214b963436f593992
MD5 eee68bc57812b18b0245067cc61a73c8
BLAKE2b-256 3c8fac57fe2df23469651b01905caea1fdebc22af5fc42811d0ab46169d62485

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ecdf3d33c94fe55209648d45ff0d9007788efbdd9e4d8543fa7c2f23df4c66c4
MD5 bcac86c539544f9e76b770e079314486
BLAKE2b-256 3273c43b92363f3261900e44d866e373ece0b4702061e1c48b97f8e53f208e80

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d67dd3921fcb2098bf2404aff20595b7052300467b0992d01811d067f9fdab0e
MD5 76b2425159a1a2876cd292d4280d785d
BLAKE2b-256 a5d38db172763915103d608cf0b3137062ed6cbe61143a03350d96facd84a4d6

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3174bc76bf0c794a55c4daec6ca85d2a0b98f880b9d8e89a624c2ab721f7e32f
MD5 3172b8fdf27001698a5b0cde99be0ab8
BLAKE2b-256 206c894a6d3c4953c112a13dac24111f92270c12b643706dda7a0682043113ef

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aad1a4bee734610bd849f91884b29c66aedaa3ac35ddf8d2dc10b8438b0a6e65
MD5 f5b979be44cf9cd516d7c41a60da4e78
BLAKE2b-256 936999e6265074c8e2f255a828b574207aff7a1fa98700fcd6e1eb9926d16276

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy_minmax-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.19

File hashes

Hashes for numpy_minmax-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10a95f14094e51efab4c1b354ac5cf9fa0d1f3ad37f1b653f7007095d2a622cf
MD5 cfe80f0597fe82dbed6fb327e3c3944a
BLAKE2b-256 8ad082e9f9b3bbc43d5d2d38e3f16910ba9b7fd27188ae46481eb1d77eb1d0e5

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5f22ae6454c29a2d8e63611f33ad4f51da5e08727c3489a8a9b64f868e82f56d
MD5 7fe33e94809d46a8428020ca19128cba
BLAKE2b-256 a50c3a42af2e3dfe30b57984216012f16aedb7826aef09b42d0a625a9f7c4cc8

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 05357bbbe8e5d6ff7a2b1605aadff5128f6e721b87c9b35880219414a688007f
MD5 d0468ac59b1865307c9f1e5925cd92b2
BLAKE2b-256 2d7361f9092b2e1997f58c66c0c0d4b2ab3fb6b3d4d49489ab7966f791447413

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5bbd76a961dd529f16d71589acc326ed04365b74c1987a9a5596a6f6e86591fc
MD5 83f8ebebd915b136bd473ae9ae706b9b
BLAKE2b-256 1b5b30df9566520e8f5cefc9e8ff517f81210f6a96fbe5185b6fca0f00996c3c

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f010f572b2bff20adefcd986f4be726c3a486c2ed9f5d18a99f7c33b5fc116e
MD5 76be3d3b65e1b20b389afc6183c2fa32
BLAKE2b-256 3a92681806951ad0e3fcdccde4ef9dc297c4c18f33110ec24df37a6835620cc4

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4e3301106d223f09008c0041f6676ae1599f088d8aaebb8357f76599adf5c29
MD5 6bcd084f0c51718c4f76f37f1c579b89
BLAKE2b-256 b8145d1ae0b224a63ecaa8cee8a930f6667c13fb7c6705c3c3ffb88f08a2d477

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page