Skip to main content

A fast python library for calculating the RMS of a NumPy array

Project description

numpy-rms: a fast function for calculating a series of Root Mean Square (RMS) values

  • Written in C and takes advantage of AVX (on x86-64) or NEON (on ARM) for speed
  • The fast implementation is tailored for C-contiguous 1-dimensional and 2-dimensional float32 arrays

Installation

PyPI version python 3.9, 3.10, 3.11, 3.12. 3.13 os: Linux, macOS, Windows

$ pip install numpy-rms

Usage

import numpy_rms
import numpy as np

arr = np.arange(40, dtype=np.float32)
rms_series = numpy_rms.rms(arr, window_size=10)
print(rms_series.shape)  # (4,)

Changelog

[0.6.0] - 2025-06-29

Added

  • Add support for Python 3.13

For the complete changelog, go to CHANGELOG.md

Development

  • Install dev/build/test dependencies as denoted in pyproject.toml
  • CC=clang pip install -e .
  • pytest

Acknowledgements

This library is maintained/backed by Nomono, a Norwegian audio AI startup.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy_rms-0.6.0.tar.gz (9.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numpy_rms-0.6.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl (9.4 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

numpy_rms-0.6.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl (8.7 kB view details)

Uploaded PyPymacOS 10.15+ x86-64

numpy_rms-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (9.4 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

numpy_rms-0.6.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (8.7 kB view details)

Uploaded PyPymacOS 10.15+ x86-64

numpy_rms-0.6.0-cp313-cp313-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.13Windows x86-64

numpy_rms-0.6.0-cp313-cp313-musllinux_1_2_x86_64.whl (18.0 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numpy_rms-0.6.0-cp313-cp313-musllinux_1_2_aarch64.whl (18.5 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numpy_rms-0.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.2 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-cp313-cp313-macosx_11_0_arm64.whl (10.8 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numpy_rms-0.6.0-cp313-cp313-macosx_10_13_x86_64.whl (10.2 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numpy_rms-0.6.0-cp312-cp312-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.12Windows x86-64

numpy_rms-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl (18.0 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numpy_rms-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl (18.5 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numpy_rms-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-cp312-cp312-macosx_11_0_arm64.whl (10.8 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numpy_rms-0.6.0-cp312-cp312-macosx_10_13_x86_64.whl (10.2 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numpy_rms-0.6.0-cp311-cp311-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.11Windows x86-64

numpy_rms-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numpy_rms-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl (18.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numpy_rms-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-cp311-cp311-macosx_11_0_arm64.whl (10.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numpy_rms-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl (10.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numpy_rms-0.6.0-cp310-cp310-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.10Windows x86-64

numpy_rms-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

numpy_rms-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl (18.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

numpy_rms-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-cp310-cp310-macosx_11_0_arm64.whl (10.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numpy_rms-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (10.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

numpy_rms-0.6.0-cp39-cp39-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.9Windows x86-64

numpy_rms-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

numpy_rms-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl (18.3 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

numpy_rms-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

numpy_rms-0.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

numpy_rms-0.6.0-cp39-cp39-macosx_11_0_arm64.whl (10.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

numpy_rms-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (10.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file numpy_rms-0.6.0.tar.gz.

File metadata

  • Download URL: numpy_rms-0.6.0.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for numpy_rms-0.6.0.tar.gz
Algorithm Hash digest
SHA256 3a5c3afa03530b3481feb912e526862753f13e39deabe43f444a73df13fa3bb0
MD5 aa791fef9d781819679b51b5d773c037
BLAKE2b-256 cd0ebaa0c8c6ed45a48320617092d397d3c797e543529a2c2eaa3fa67b8c90ee

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5e5f0c9606005a19072f302995a4b6ed23134bb0ea207950062439406137b03
MD5 1c6caedaf197b1c53a77acece521c5fa
BLAKE2b-256 fa74d0f36753040a33407e1809e8b45e09257825da909593ae64b0b520f0b96e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eddd90a5ec9aea7ccc2c1511e9cf53770fc0df8ec3daaaf04319ff53c9329467
MD5 78f34ad744da5a1ca21d0729d761050d
BLAKE2b-256 6aea3308c1fdd54ad40eb99df783339fc7740528f8ba8cecc65bba4dfa8c1979

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81d1b8fae467130ee4d22ae36938dfcc013f9ee9459f7ccb0a1598f9d19bd6a7
MD5 a2666fbe77287b7a9bf1eea1996d4b6d
BLAKE2b-256 27f5d659b48cec10e14135027b3a8565bc0db5ffaac3257a6a8e5b3726bd925a

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2796d6d485259354dad52feec13fc63b3682e3997b1e0e35357a71b9ce83fc29
MD5 418442813248cd971d53000621732cfc
BLAKE2b-256 7401c4bb6966b6353e2d410d7f4fbae26cbae1afb60c16d3bf4b9340c07c97ca

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8bf5b86654106a5851736ea6fa977ab7785133ea9625a816916c69298d7dc63e
MD5 3c513ba4b5d345d5504471eceeadbfa0
BLAKE2b-256 217abb4caaf16e7803792e58d3bf0703c7a6b5f472953759f5374eb43a7fbb41

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a22a4644eeb1ff178410e9116f77c726559635061df8bc86469fd407e9c20ef
MD5 0160e7b41012cee5463c1d6778e45700
BLAKE2b-256 d6e5b9428dffdaa4dc038e8ae983058e05eba34e810667915b19f7cb7717c00d

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0286ad90213fd7b45862258c2a735110e9641d5529f05e04a768344700ecb20b
MD5 cf96120e2c50872d133cc06b0e928903
BLAKE2b-256 2a50a40b3262952b2e6b0cde86f0074eaca62d3063159986a94aa08cbf6d30e2

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5bc1dce4b87beeba04e61fc40b8c7d52c9893e1747bbbffa448a8ff488aa609f
MD5 4af24d50f798ab566607491fe4ff0ee1
BLAKE2b-256 e6d0990bfdda4bf77338199c542eedeae8ec79bc69b9e59c3c0e130cdd3ebfe7

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.6.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7b1c8287d3c4ec7a74b86f68ccaebfe4bfc2d05c846ddb8c0e8668a99ef512b0
MD5 d6a9d008d9e56c64513e219b33d69ad8
BLAKE2b-256 55899d4ea812444347258429088d4ce9798f6245623984698de7a8c0e2537abb

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 20234a4a02142d71db8ad6a55884e80dedfa19fc60ec8d1efaa52ced7d8ea1e1
MD5 cc8b029ef5a39fdf3a53683975045386
BLAKE2b-256 be7f485fd9779297b17241c9a970ab7283a786f1569bc66cf9746aadebaf0dec

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d56a1011a484d7de99163c2d2fdcc6b94d5235d86b024abdf323f280dbdc91f0
MD5 12c5d65e665a56f79f064add19defbe5
BLAKE2b-256 ed688595e8b1e17da8d15097189d3a219d6637d2a3e47cce8c914f146f0df28a

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 991ffb24ceb9415b51ee9b66ddc417b8f343803a24c92a60a020bb493189e62b
MD5 af988417fcf009230c791e6b89d9765c
BLAKE2b-256 f261fc2a8a5d0a53a54f15bc036ab264c0b72abb95487fcf8e92d64ab5f6f020

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5c56882cba3ecd3562094d28627a22e68de7d24ee0bc057da030d5881ff853a
MD5 707301f15ce423c7189d8ce1efe29ccf
BLAKE2b-256 c7ae548f0788a83a3d224559254ebdd800dbcec5b40b5bf7ebd3078dedce235e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d3a3339f32bd4044d6c5f3d427fcbd34d5a91c319c957208f1a682e1d6e193e
MD5 dcf3b4be6e5be23a4fe18d986832eb16
BLAKE2b-256 65bc60a597e3b194829050a0682deb8514d276d5b9bc7c57f3e5a9e1b8e34595

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0c98fcae91dc3dc8ada97e3aaab95f83ad54ba0a8518c706d0a18304d58f9bc2
MD5 4156ebbc25149d2db17602fc6d856c70
BLAKE2b-256 d95dc5c0a9c5a0e2d6e3bf1feaf035bda4568e8fd8ed168d2e43063844dcb8a8

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f838eb4e3b9197fa784e8fd6faae8bff798242df0c781a959c317d24200380db
MD5 e192f8e018e544ea69ee77c9f6af2950
BLAKE2b-256 0371b6b4d60a638e1907cc02aa487cc5af6e49ae2e92ea776cb34161cfe27502

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c71456bceb1e2387123ce9182a333c91185b83df06b67481f6b63ed2e9044739
MD5 abf8a56c35d7ba15e54926449efeff62
BLAKE2b-256 9a2f62876a08b155bb112683be87dedb5c16acb6cc4dee3890d3fa60475e1434

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0af91a7c4324be7845241a7d0bca0df6692ebb47297d10908980610e66a6f385
MD5 5ffd654e890dade7a0073ef9ce89b699
BLAKE2b-256 7a523d6b6c05e1444e8ab608e326be7f03e27ec61778d6a5132e420ad40058a2

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4874165ceb15eda9bbe4fbc3bc1bb8c81cbe0c2cbff64721a7bb10090f1e1b3
MD5 98ee4b01a26b1dc9cc5c5ca8dc59bc91
BLAKE2b-256 9494fdae1a1ddcd70356cb6bb6a66620b374dfd2a1bd0511f310879db4cf19cc

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7887844a2c16f3055efe3c294dd0e3c9e632949647348c86534c3f5088ab758d
MD5 c3073f452f833dc278a4b4eabd9b2eb0
BLAKE2b-256 0fc2eb56107e306a12b869bb908cea853387d261de1f460d8e1df4b4de8da9a2

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9bf1a618a16542586427c13ebc6f638539fb5a1c2f1b1dcd75c56e07a3f29ff
MD5 bc1efe4f89374b1c76655379afe9528f
BLAKE2b-256 f0408ac8841037ac437d0802b81e48c6e4b10873b837338392f066b308f21e3c

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 91a24ced0763b12c9ff35021cac08173487c7cbdb9f827a73e743b613c1d429b
MD5 d1b62cbae403ba3cc57bae5dc17da04d
BLAKE2b-256 02830bcf595aa46109ba9424a8c94ca698bac8e946f101e160a0b802ced76bc7

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 72e46ab4fe9b9de742d32c035903093766bb83b1bfdb78a96aaf0879a7a15c1b
MD5 2d1e3bdfe4419603515de3685c57c9d2
BLAKE2b-256 296e4bc2ca60d31ea0bdbf480c208b4bd29e5c32d016c105458b8f1f4f2478d6

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b6c3d1ecdfb94844187b3f18f734d36a921d1491da2ca9591a6fa7c40bcbb4d6
MD5 477950552e4b1b03ea06b60071d19fb9
BLAKE2b-256 af170c6189cbf70ebb0c0042b153e32c4d5842a2e9f3ae5ff166420570a351e6

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b4d6e6ff2ed8572b5cab2e01e8be22e3910499db3791e36bb0bb856bf3894f7a
MD5 c4d3006b3bb0b77b979b9f31f68a7ab5
BLAKE2b-256 0bc82761bc668a284ee86eaf26e0ebc9e7de1f95e1fbccf6ab2194d0ab26f812

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cee024e6e8f53c2ed19625b33559fde24dde5b523e2f99fed8bc28953360ac9b
MD5 8fd9c6520404d131b9938b2d0bd1a690
BLAKE2b-256 9e5f02e57018802c617ffc9f27468e52886f8fd093339b0853e3de006093ba1f

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 502c49fde449ec03ac68b4ed05d969b0267ab0612215209d13c38c0efc35f31c
MD5 6e95955e687919c84f5c16dca3ee10df
BLAKE2b-256 3c7e8d03b9de5e1461f7cf2026b333e46f02f9af9d01bef0e928279c8aad4c4b

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 357f433dfb7b61ebfdf5204e4254664c231c8560f79cf0e0e6b461b762b86466
MD5 17465dabf74985d0bdf2356a08411cb7
BLAKE2b-256 0203a2b0c2a4cb83a739e6e1d78f6845227c9097b5428b04b26783fda98e6647

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55d942be0848370728c3d9af11fb66d947005d68866f3274828c7d5ce0c00417
MD5 6d9a87161498a2ea887ba2bdcf824b76
BLAKE2b-256 fb4096203c9a54fe994d03f2d1326056df9bed705acc281dac37930bf1d30f70

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 82ab9dfb322f248b20bf3dae7b31a1de79444cd4b97712ba9ce171736b76ee27
MD5 30e7fa000da317b9152368adc9776bce
BLAKE2b-256 c569abb0f356feee6da405c866b7b85f73f90b28ed335cf7a61ad5ce60fe461b

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0d3a399617f5383d2cc103839b917630517608e84a6f2555912cdd448c32e575
MD5 ef4373c59f3e330d8ef8a48a0b927bf7
BLAKE2b-256 12fea0f99e83294483159ad290ed162ac3c57548c143b37728015816e3ac1cc9

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d24f5646e3f256f5b51570e31bbd2e2ee3c93b9ff0822e994bfe7bb287c19fb5
MD5 1479c742847508221a8ca5743a12c645
BLAKE2b-256 3da61c9b576bc80462e8e7acd20a35c6d0694ffca3c28107dfcd733e3864a83e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5ea5a7d5a597dd1f7e9392155ea803cc8eb685a3a1f0e0dd4d037ae938634ad3
MD5 395bcd9b755c7f9d5d7156fb7deaf89c
BLAKE2b-256 dc98241dbfcf9d23f8682ddfff10b16f748f384df2cc4e6775b15f62f2f676f7

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2245becd863547883a5f354e5c5f059ba0348caaf7b01d0d481ee8534da49e21
MD5 280c75ed8db3f48c149942a84402133d
BLAKE2b-256 2a2381ca5f4a4abdb13d38c46413f0ff2280ed16a728185fd66f3e625c1c9575

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f3cd73f041253ab6e45fed9966de9d7a14082525c1ac6d3144476b3d01596a5
MD5 015ea1c06ad8d239000f6580257cb7a1
BLAKE2b-256 d532321b3095f629c9724399823fd26d303a7b0812eb6daa996226ffa673fb04

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4787aa061f99c5fc5b0525f76e173e388af06b67b917ddc9b78391680a78a835
MD5 248aa45d61fe41dce7cb4bed6d0e2031
BLAKE2b-256 a12d6aba998453f92a4b3099781105529ae723467e2dfe5f1afc80c8347e25dc

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7e7e5677b22bc3b36ec6358c543e5297d882f82a308a6735fbbed48dd9d3c2f0
MD5 3cf2735b448ca19ef21363dd83399b07
BLAKE2b-256 6cd661f7fb4a942e1a5dc3ac3949e3baaff3321cf32fa8e3e7626336d2d1f9d1

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 12891e5d645f3b91ab12590001dc22d23177ff6a944aa702eb9b389b36c76827
MD5 798873796ae2163b5853a3c682ec4416
BLAKE2b-256 fbfedb09d89dd28a7a5ac8478bd50941d941c9da3dcc7913a4a692f5cec262bb

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 451794e4cd2faa28781cf952c34d19c00cfc459dbccc14c4f87bb130c86bc657
MD5 8b33e703843a0ba6759bd6857d86f1de
BLAKE2b-256 f74267fe05bcc26a82495b6087b159ed639d5e8a3a81fdf616b58769c676442d

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b05f482845e04519469f66938c26fc796c915ff4dafdf851870fef13f775ae5
MD5 8dd2b93d767a42c618e7c7b253b85cda
BLAKE2b-256 bd732e6e51da76cb8bb97c68d8be5b9bf8308b267a8cc191ebb6da8a131cb961

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e091d012e310eaeeff9ee612000fa915f653cf6be4e85ac8778dc7931a6dcb4
MD5 bad87c498d2cccc7c313fabc3fe4272d
BLAKE2b-256 053e2ae26bd34e1a3ca3ac0ea4582e56899293ebbb1e3428962b6a51ddf6b196

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7251473a573a7d27e4f98a8e9930b8fbf30b32a174895661e0e0570cddf41bfc
MD5 9d062f3dc4597364caf70170d8cefe84
BLAKE2b-256 a7263dbcd36f5269bd20f31bbb6a27b2dd97d3f8c872218505b20f48877b6adc

See more details on using hashes here.

File details

Details for the file numpy_rms-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 831a043b7b5b2edff8fc2f29e0d8f15192a7f0d91261d7636a684db1b0e0d24f
MD5 3c0789590e800e55e90fc4fd4f9bf96d
BLAKE2b-256 c446ae0cb93daecaac0b2d842ca13486604e57798a6ddc666902f5e71e226be4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page