Skip to main content

prints numpy arrays nicely

Project description

NumpyPrint

Numpyprint uses the Package prettytable to print numpy arrays in a nice format. At the moment this works well until a 2D Dimension.

Installation

pip install numpyprint

or

python3 -m pip install numpyprint

What is it

NumpyPrint nicely prints an numpy array with the help of the package PrettyTable. It prints arrays of any dimension.

Example

import numpy as np
from numpyprint import np_print

numpy_array = np.random.rand(1,2,3)*100
np_print(numpy_array)

The output with the default settings looks like this:

+---+----------------------------+---------------------------+
| 0 | +---+--------------------+ | +---+-------------------+ |
|   | | 0 | 40.361415789985486 | | | 0 | 89.54304456427288 | |
|   | | 1 | 42.44964170184573  | | | 1 | 43.11298502039822 | |
|   | | 2 | 19.234562477482196 | | | 2 |  40.0682288789328 | |
|   | +---+--------------------+ | +---+-------------------+ |
+---+----------------------------+---------------------------+

It prints a nice table with frame boarders and row numbers.

How to use it

Print to Console

import numpy as np
import numpyprint as npp

array = np.random.rand(3, 2, 3)*100

npp.np_print(array)

# or with change of some settings

npp.np_print(array,precision= 2 ,row_numbers= True, column_numbers= True,odd_vertical= False,style='plain')

Use it in Jupyter Notebooks

In Jupyter Notebook it is possible to use HTML to format the output. The following command prints the numpy array in a nice table.

import numpy as np
import numpyprint as npp

array = np.random.rand(3, 2)

npp.np_display(array)

Get the PrettyTable Object

If you want the PrettyTable object you can use np_format(). But keep in mind that multidimensional arrays have nested tables.

import numpy as np
import numpyprint as npp

array = np.random.rand(3, 2)

table = npp.np_format(array)

Change the Default Settings

The defaults/settings are:

defaults=dict({
    'row_numbers': True,
    'column_numbers': False,
    'precision': None, # None or int like 2
    'style': 'default', # 'default' or 'plain'
    'odd_vertical': True
})

It is possible to change it like:

import numpy as np
import numpyprint as npp

npp.defaults['precision'] = 2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpyprint-0.1.5.tar.gz (2.1 kB view details)

Uploaded Source

Built Distribution

numpyprint-0.1.5-py3-none-any.whl (2.9 kB view details)

Uploaded Python 3

File details

Details for the file numpyprint-0.1.5.tar.gz.

File metadata

  • Download URL: numpyprint-0.1.5.tar.gz
  • Upload date:
  • Size: 2.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.1

File hashes

Hashes for numpyprint-0.1.5.tar.gz
Algorithm Hash digest
SHA256 a514c1754c4f67edcc0a7bc9d63bf868eed8908ee262adc963d0d9938e53d068
MD5 bf74d78a4915cc2437383df8c551ca4b
BLAKE2b-256 14b1e27ec9ba818e30e1c7acd17a5a9de9bcb28852c8f07e0ba3d2fab80bb05c

See more details on using hashes here.

File details

Details for the file numpyprint-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: numpyprint-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 2.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.1

File hashes

Hashes for numpyprint-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 4e8a73208c4cda4712bcd453b71ef15c15bf1a65fcbfc47c711a3a530e7042f1
MD5 458b9ee011f3270b95d2e8abb4255c98
BLAKE2b-256 bb745aafaf17fd8a07824afddab7a41fc310f708f46e989ed4177ce820cce2e2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page