Skip to main content

A Python library to export Machine Learning/ Deep Learning models into PMML

Project description

Build Status PyPI version license Python Python

Nyoka

Overview

Nyoka is a Python library for comprehensive support of the latest PMML standard plus extensions for data preprocessing, script execution and highly compacted representation of deep neural networks. Using Nyoka, Data Scientists can export a large number of Machine Learning and Deep Learning models from popular Python frameworks into PMML by either using any of the numerous included ready-to-use exporters or by creating their own exporter for specialized/individual model types by simply calling a sequence of constructors.

Besides about 500 Python classes which each cover a PMML tag and all constructor parameters/attributes as defined in the standard, Nyoka also provides an increasing number of convenience classes and functions that make the Data Scientist’s life easier for example by reading or writing any PMML file in one line of code from within your favorite Python environment.

Nyoka comes to you with the complete source code in Python, extended HTML documentation for the classes/functions, and a growing number of Jupyter Notebook tutorials that help you familiarize yourself with the way Nyoka supports you in using PMML as your favorite Data Science transport file format.

Read the documentation at Nyoka Documentation.

Folder structure

nyoka-pmml
|---nyoka
	|---docs
	|---examples
	|	|---keras
	|	|	|---(jupyter notebook examples)
	|	|---lgbm
	|	|	|---(jupyter notebook examples)
	|	|---skl
	|	|	|---(jupyter notebook examples)
	|	|---statsmodels
	|	|	|---(jupyter notebook examples)
	|	|---xgboost
	|		|---(jupyter notebook examples)
	|---nyoka
	|	|---keras
	|	|	|---keras_model_to_pmml
	|	|---lbgm
	|	|	|---tests
	|	|	|	|---lbg_test
	|	|	|---lgb_to_pmml
	|	|---skl
	|	|	|---tests
	|	|	|	|---pre_process_UnitTest
	|	|	|	|---skl_to_pmml_UnitTest
	|	|	|---pre_process
	|	|	|---skl_to_pmml
	|	|---statsmodels
	|	|	|---arima
	|	|	|---exponential_smoothing
	|	|---xgboost
	|	|	|---tests
	|	|	|	|---xgboost_Test
	|	|	|---xgboost_to_pmml
	|	|---Base64
	|	|---PMML43Ext
	|	|---PMML43ExtSuper
	|---LICENSE
	|---README
	|---setup

Prerequisites

  • Python 3.x

Dependencies

nyoka requires:

  • scikit-learn (>=0.19.1)
  • keras (==2.1.5)
  • tensorflow (==1.9.0)
  • statsmodels (>=0.9.0)
  • lightgbm (>=2.1.2)
  • xgboost (>=0.8.0)
  • sklearn-pandas

Installation

You can install nyoka using:

pip install nyoka

Usage

Nyoka to export scikit-learn models:

Exporting a Support Vector Classifier pipeline object into PMML

import pandas as pd
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, Imputer
from sklearn.svm import SVC

iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data,columns=iris.feature_names)
irisd['Species'] = iris.target

features = irisd.columns.drop('Species')
target = 'Species'

pipeline_obj = Pipeline([
    ('svm',SVC())
])

pipeline_obj.fit(irisd[features],irisd[target])


from nyoka import skl_to_pmml

skl_to_pmml(pipeline_obj,features,target,"svc_pmml.pmml")

Exporting a Random Forest Classifier (along with pre-processing) pipeline object into PMML

import pandas as pd
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, Imputer
from sklearn_pandas import DataFrameMapper
from sklearn.ensemble import RandomForestClassifier

iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data, columns=iris.feature_names)
irisd['Species'] = iris.target

features = irisd.columns.drop('Species')
target = 'Species'

pipeline_obj = Pipeline([
    ("mapping", DataFrameMapper([
    (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , 
    (['petal length (cm)', 'petal width (cm)'], Imputer())
    ])),
    ("rfc", RandomForestClassifier(n_estimators = 100))
])

pipeline_obj.fit(irisd[features], irisd[target])


from nyoka import skl_to_pmml

skl_to_pmml(pipeline_obj, features, target, "rf_pmml.pmml")

Nyoka to export xgboost models:

Exporting a XGBoost model into PMML

import pandas as pd
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
import xgboost as xgb

boston = datasets.load_boston()
y = boston['target']
X = boston['data']
xgb_model = xgb.XGBRegressor()

pipeline_obj = Pipeline([
    ("scaling", StandardScaler()),
    ("model", XGBRegressor())
])

pipeline_obj.fit(X, y)


from nyoka import xgboost_to_pmml

xgboost_to_pmml(pipeline_obj, boston.feature_names, 'target', "xgb_pmml.pmml")

Nyoka to export lightGBM models:

Exporting a LGBM model into PMML

import pandas as pd
from sklearn import datasets
from sklearn.pipeline import Pipeline
from lightgbm import LGBMRegressor,LGBMClassifier


iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data,columns=iris.feature_names)
irisd['Species'] = iris.target

features = irisd.columns.drop('Species')
target = 'Species'

pipeline_obj = Pipeline([
    ('lgbmc',LGBMClassifier())
])

pipeline_obj.fit(irisd[features],irisd[target])


from nyoka import lgb_to_pmml

lgb_to_pmml(pipeline_obj,features,target,"lgbmc_pmml.pmml")

Nyoka to export keras models:

Exporting a Mobilenet model into PMML

from keras import applications
from keras.layers import Flatten, Dense
from keras.models import Model

model = applications.MobileNet(weights='imagenet', include_top=False,input_shape = (224, 224,3))

activType='sigmoid'
x = model.output
x = Flatten()(x)
x = Dense(1024, activation="relu")(x)
predictions = Dense(2, activation=activType)(x)
model_final = Model(inputs =model.input, outputs = predictions,name='predictions')

from nyoka import KerasToPmml
cnn_pmml = KerasToPmml(model_final,predictedClasses=['cats','dogs'])

cnn_pmml.export(open('2classMBNet.pmml', "w"), 0)

Uninstallation

pip uninstall nyoka

Support

You can ask questions at:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

nyoka-1.1.0-py3-none-any.whl (305.5 kB view details)

Uploaded Python 3

File details

Details for the file nyoka-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: nyoka-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 305.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.19.6 CPython/3.6.6

File hashes

Hashes for nyoka-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9e7f45b58d04f57155fa586414a802d7e6687bed92a4ab22b96c6e4527a04847
MD5 6a2668e209cbf709978de4c7a459da7e
BLAKE2b-256 5451670845e16e849e5403a632ffff5cd3466854e14b5f1adfe935a1f09690e1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page