Skip to main content

Fast & flexible embedded vector database with incremental HNSW indexing.

Project description

OasysDB Use Case

GitHub Stars Discord

Crates.io PyPI

License Contributor Covenant

👋 Meet OasysDB

OasysDB is a flexible and easy-to-use vector database written in Rust. It is designed with simplicity in mind to help you focus on building your AI application without worrying about database setup and configuration.

With 3 different runtime modes, OasysDB will accompany you throughout your journey from the early stages of development to scaling up your AI application for production workloads.

  • Embedded: Run OasysDB directly inside your application.
  • Hosted: Run OasysDB as a standalone server. Coming soon
  • Distributed: Run sharded OasysDB instances. Coming not so soon 😉

Use Cases

OasysDB is very flexible! You can use it for almost any systems related with vector search such as:

  • Local RAG (Retrieval-Augmented Generation) pipeline with an LLM and embedding model to generate a context-aware output.
  • Image similarity search engine to find similar images based on their semantic content. See Python demo.
  • Real-time product recommendation system to suggest similar products based on the product features or user preferences.
  • Add your use case here 😁

Features

Core Features

🔸 Embedded Database: Zero setup and no dedicated server or process required.

🔸 Optional Persistence: In-memory vector collections that can be persisted to disk.

🔸 Incremental Ops: Insert, modify, and delete vectors without rebuilding indexes.

🔸 Flexible Schema: Store additional and flexible metadata for each vector record.

Technical Features

🔹 Fast HNSW: Efficient and accurate vector search with state-of-the-art algorithm.

🔹 Configurable Metric: Use Euclidean or Cosine distance depending on your use-case.

🔹 Parallel Processing: Multi-threaded & SIMD-optimized vector distance calculation.

🔹 Built-in vector ID: No headache record management with guaranteed ID uniqueness.

🚀 Quickstart with Rust

Rust-Banner.png

To get started with OasysDB in Rust, you need to add oasysdb to your Cargo.toml. You can do so by running the command below which will add the latest version of OasysDB to your project.

cargo add oasysdb

After that, you can use the code snippet below as a reference to get started with OasysDB. In short, use Collection to store your vector records or search similar vector and use Database to persist a vector collection to the disk.

use oasysdb::prelude::*;

fn main() {
    // Vector dimension must be uniform.
    let dimension = 128;

    // Replace with your own data.
    let records = Record::many_random(dimension, 100);

    let mut config = Config::default();

    // Optionally set the distance function. Default to Euclidean.
    config.distance = Distance::Cosine;

    // Create a vector collection.
    let collection = Collection::build(&config, &records).unwrap();

    // Optionally save the collection to persist it.
    let mut db = Database::new("data/test").unwrap();
    db.save_collection("vectors", &collection).unwrap();

    // Search for the nearest neighbors.
    let query = Vector::random(dimension);
    let result = collection.search(&query, 5).unwrap();

    for res in result {
        let (id, distance) = (res.id, res.distance);
        println!("{distance:.5} | ID: {id}");
    }
}

Feature Flags

OasysDB provides several feature flags to enable or disable certain features. You can do this by adding the feature flags to your project Cargo.toml file. Below are the available feature flags and their descriptions:

  • json: Enables easy Serde's JSON conversion from and to the metadata type. This feature is very useful if you have a complex metadata type or if you use APIs that communicate using JSON.

  • gen: Enables the vector generator trait and modules to extract vector embeddings from your contents using OpenAI or other embedding models. This feature allows OasysDB to handle vector embedding extraction for you without separate dependencies.

🚀 Quickstart with Python

Python-Banner.png

OasysDB also provides a Python binding which allows you to add it directly to your project. You can install the Python library of OasysDB by running the command below:

pip install oasysdb

This command will install the latest version of OasysDB to your Python environment. After you're all set with the installation, you can use the code snippet below as a reference to get started with OasysDB in Python.

from oasysdb.prelude import *


if __name__ == "__main__":
    # Open the database.
    db = Database("data/example")

    # Replace with your own records.
    records = Record.many_random(dimension=128, len=100)

    # Create a vector collection.
    config = Config.create_default()
    collection = Collection.from_records(config, records)

    # Optionally, persist the collection to the database.
    db.save_collection("my_collection", collection)

    # Replace with your own query.
    query = Vector.random(128)

    # Search for the nearest neighbors.
    result = collection.search(query, n=5)

    # Print the result.
    print("Nearest neighbors ID: {}".format(result[0].id))

🎯 Benchmarks

OasysDB uses a built-in benchmarking suite using Rust's Criterion crate which we use to measure the performance of the vector database.

Currently, the benchmarks are focused on the performance of the collection's vector search functionality. We are working on adding more benchmarks to measure the performance of other operations.

If you are curious and want to run the benchmarks, you can use the command below to run the benchmarks. If you do run it, please share the results with us 😉

cargo bench

Memory Usage

OasysDB uses HNSW which is known to be a memory hog compared to other indexing algorithms. We decided to use it because of its performance even when storing large datasets of vectors with high dimension.

If you are curious about the memory usage of OasysDB, you can use the command below to run the memory usage measurement script. You can tweak the parameters in the examples/measure-memory.rs file to see how the memory usage changes.

cargo run --example measure-memory

Recall Rate

In vector databases, recall is the percentage of relevant items that are successfully retrieved compared to the true set of relevant items also known as the ground truth.

To measure the recall rate, you can use the command below to run the recall rate measurement script. You can tweak the parameters in the examples/measure-recall.rs to see how OasysDB performs under different requirements.

cargo run --example measure-recall

Note: This script uses random vector records to measure the recall rate. This might not represent the real-world performance of OasysDB with proper datasets.

🤝 Contributing

The easiest way to contribute to this project is to star this project and share it with your friends. This will help us grow the community and make the project more visible to others.

If you want to go further and contribute your expertise, we will gladly welcome your code contributions. For more information and guidance about this, please see contributing.md.

If you have deep experience in the space but don't have the free time to contribute codes, we also welcome advices, suggestions, or feature requests. We are also looking for advisors to help guide the project direction and roadmap.

If you are interested about the project in any way, please join us on Discord. Help us grow the community and make OasysDB better 😁

Code of Conduct

We are committed to creating a welcoming community. Any participant in our project is expected to act respectfully and to follow the Code of Conduct.

Disclaimer

This project is still in the early stages of development. We are actively working on it and we expect the API and functionality to change. We do not recommend using this in production yet.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oasysdb-0.6.1.tar.gz (88.3 kB view details)

Uploaded Source

Built Distributions

oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

oasysdb-0.6.1-cp312-none-win_amd64.whl (516.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

oasysdb-0.6.1-cp312-none-win32.whl (491.8 kB view details)

Uploaded CPython 3.12 Windows x86

oasysdb-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

oasysdb-0.6.1-cp312-cp312-macosx_11_0_arm64.whl (682.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

oasysdb-0.6.1-cp312-cp312-macosx_10_12_x86_64.whl (661.7 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

oasysdb-0.6.1-cp311-none-win_amd64.whl (518.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

oasysdb-0.6.1-cp311-none-win32.whl (493.9 kB view details)

Uploaded CPython 3.11 Windows x86

oasysdb-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

oasysdb-0.6.1-cp311-cp311-macosx_11_0_arm64.whl (684.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

oasysdb-0.6.1-cp311-cp311-macosx_10_12_x86_64.whl (664.3 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

oasysdb-0.6.1-cp310-none-win_amd64.whl (518.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

oasysdb-0.6.1-cp310-none-win32.whl (493.9 kB view details)

Uploaded CPython 3.10 Windows x86

oasysdb-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

oasysdb-0.6.1-cp310-cp310-macosx_11_0_arm64.whl (684.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

oasysdb-0.6.1-cp310-cp310-macosx_10_12_x86_64.whl (664.4 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

oasysdb-0.6.1-cp39-none-win_amd64.whl (518.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

oasysdb-0.6.1-cp39-none-win32.whl (494.1 kB view details)

Uploaded CPython 3.9 Windows x86

oasysdb-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

oasysdb-0.6.1-cp39-cp39-macosx_11_0_arm64.whl (684.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

oasysdb-0.6.1-cp39-cp39-macosx_10_12_x86_64.whl (664.8 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

oasysdb-0.6.1-cp38-none-win_amd64.whl (518.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

oasysdb-0.6.1-cp38-none-win32.whl (494.2 kB view details)

Uploaded CPython 3.8 Windows x86

oasysdb-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

oasysdb-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

oasysdb-0.6.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file oasysdb-0.6.1.tar.gz.

File metadata

  • Download URL: oasysdb-0.6.1.tar.gz
  • Upload date:
  • Size: 88.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for oasysdb-0.6.1.tar.gz
Algorithm Hash digest
SHA256 0ed9f7a4711d74b2c94ad43802e7de21210c7eacf86408015365b739ea6ff761
MD5 38d7e0eb979c1a0114e2b8b24e7c91ac
BLAKE2b-256 c2444e6782749cc6f48d6a4b56d81e43b553f32d7b24d6138cff1208c0250152

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a1c174030fa5dff926dfc6e3dc7769d9997f30c86c3efe62c00895066b182ec
MD5 e645e5a97d84023eacbcd7a3be640c53
BLAKE2b-256 9929037b5a3aba6fe3aab15dd0c14a35f7faa60bba5ded5cee79e304cde56ca7

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc1f08cb2ee046e8c98815efb6b5e20bd1812ae869cda3aabb4ba2eb1cc62ff3
MD5 a7b5444c45e840e7ada0be6a89790f9b
BLAKE2b-256 cb6bdde338c44e4cf1d6e6a91294067510ba8897913e5d85edd0460e3b71357f

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cea3ab5e38a036356e6d2c98e8c9625e13fcac3fabdd45df48ef805d23540dab
MD5 7050d7da95affa22f44771d4dbc2a91a
BLAKE2b-256 76d3c18f6095340417bf2b6501d490927b67b6d7ef5fb72ee97987e14684cb82

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b38ca40c4e8f97c9598554ae817d53d7a49d7b21862d7df5ae82db79b9092d59
MD5 a9b54f582b351216315d6efca79eab51
BLAKE2b-256 702f2389a321d61c1caa7836765a739387237d7bd278f674cbddfb1a6fc0e2e8

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab1af3ac290e1edf984046685fe4d9a8f06f655aafc977587c933fffd5ae147d
MD5 3901fd2b697a54d2b4056fb489718e6b
BLAKE2b-256 c9a44b36c76988809174602aa7a86590941d00821cce0bd475d2e7ce50e93356

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5fb9de5ba5d5f3c55f38d474ba760168f7c8f94bbef5ad679b25a359860d091d
MD5 488d5a360127b4b598b8c4cd24761f15
BLAKE2b-256 0a034bbd559f6a0419aa1d7b3f4002a8ca2e146dba5450d2778860031785db13

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5231c9c320e0cd54f8d13c5b71249207107e7309ad34a3a977cc190377a861a
MD5 6d75443547b00fd3882ae5bba7d67cc7
BLAKE2b-256 6dcf5516cfbab0abaafe7f0c11e274b51a0234a6f76be060dadf3d82c6f20c6b

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cb0d04756f17356711b4d48b98eaaba73bd37a0994b4d8741398a06379049b7
MD5 dd5e7174d0d6d1d477b981b9ab66cd62
BLAKE2b-256 f0a5c08f64456d8bf10493e060b206ef19707b9de1d1c60397511d382b43fbae

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 597385b15a21bfd0660cc7bf3ef81719876ee1e5beb35b02d8b871fc79cf20b0
MD5 f510699b7c2391f16e3d582e88787c81
BLAKE2b-256 918d5d7216a3dc1241e969ddf103ea543934ded684fa2564bdff31a8b82b2477

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 f98aef7cfa6f991b434b57cb49ae65d3a2e4ae1f2ffc3e79e9adb8a16241a329
MD5 6e5ef8583937c64e65bb855513912288
BLAKE2b-256 8e4a1b1a7f68478663c4df2d8ecbf2a6c4894250bffa6c861aa27127de5cd1ef

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.6.1-cp312-none-win32.whl
  • Upload date:
  • Size: 491.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for oasysdb-0.6.1-cp312-none-win32.whl
Algorithm Hash digest
SHA256 07a554dbd3174d44cc9b35425e6459dfc2c5e1e54e5a4a0057748e90e477c7f8
MD5 a3e1f3d5b958a7a21e49ce7557ed0241
BLAKE2b-256 58a17977e8bfaf078e0d80273865578ed61af65700b2e74f4fad11539da1b756

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8acf0eaea796ec8e2a554db340cd67a51f0b52671fc8d5faf9f8174c4bfe6e4d
MD5 f5c7c478b388c4e7935868b3e6c366c4
BLAKE2b-256 fdb4fa681f6288c94e46ff2252624e9d6db2d9a75e4eb29e1f30de0c50703c95

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81aae6738e3ff0e6d3df31c65b543a3ebf645aff83ec9533ce3d0595df278fab
MD5 956d751b1b06efffb9b85644031e5dec
BLAKE2b-256 0863f4c6ed2a89437420a1122c011dd43781c7a2655c0519ea1b6b078317d87e

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9831328360d70f412f13d22d29cfbcb95976f7deaf9860c84058510f4b84fd7d
MD5 45b9c8b1507faa00116fcbcf5559f4b0
BLAKE2b-256 d64eedf43f9a2527c9bc9d6496f2edafe068994e382e4b94ae229aafc76576a5

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c2f54f996f1b2d346c32696acc2dbb8d14af1a5f14eea046a4b90db6132ed75
MD5 a3293085404937027684a6f9ad51dde4
BLAKE2b-256 153866a3346b27130760e8f9eb399c9aac128a511dbef244cd823447bad95f96

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ee1453f6e9e1ecfc0f5c61044bfbbe673e8beceb02a2d84fa383217e52903f04
MD5 a703a7f3151521a680960f8c01dcc322
BLAKE2b-256 3371ee12f9084505d7b8a22a3f2a603575ebaf85eb00b220a495b6b484c8ead8

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ad6d4f6b9582e384cd4dbbbf55716ae1d63b7c3807406709956bcfa1180a31a1
MD5 0e1bccfbe3682799b7919cfe9f1698a3
BLAKE2b-256 5cf38c976795e434f742686a2ffa6976d1a453dc4f9272816c050e34129dcca9

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.6.1-cp311-none-win32.whl
  • Upload date:
  • Size: 493.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for oasysdb-0.6.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 8921cc2ee7095503ab94714eee121d75f874d67051591996b182d7dbbaa1aeaf
MD5 c246ce67817a9342b9b7f52b5a157a61
BLAKE2b-256 7e9956a847ff863b823f0e0c9815fd1803987b111c2e5b5e2e79d6767b41e147

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2172d1a9902db298b57f1676a9b090120674af718d103a6ed503e79d195c24ef
MD5 0f2ecdca9d614a0d47cb6248c44248c9
BLAKE2b-256 4b285a1f6085189a2a639d64faec3b654edaeae99fddf9a17132d89cbfaa1408

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 865b76b9bc4c1d46c32ab9cb258c2acea304357350881039544c7aa0519c8d79
MD5 39fbc21205b2e149f030114e94ce8958
BLAKE2b-256 3a98a37304bc9d3fd5437396fb45fe9689804d8efdfeae3e34136e8256477e17

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4b0e1d2510fa010608ee4d3f2dc84697f711379efadd70ccdd364b330e663fcf
MD5 878fe2a179295cc881b999496c6f8a3c
BLAKE2b-256 29edd1a2ec3e277519845e7fd863171fb93f4d6ee8286df1f56e709b3736b64c

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac1f8c487665841389427e86cf809a441b441a8d2705501c51c3a06996d47e32
MD5 cca7b20ace4486ed94cd38447ed342ff
BLAKE2b-256 99c65b647a2b5e3529ef8fd5dc983b6413fa7ca3af366f6ae833492e8a418e1b

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 103ddc9c06e8f313d9e7b75ff88e2835ab0fc1945f6c1641403be24c4998d3d6
MD5 cf3203b2ec7a611f0fda4629dff1db2f
BLAKE2b-256 5f68af2bbb2940a16bb3af5d626ac7185c5177f990c76d0fe43335730294be20

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 d466cc16910d8b1efb602d6ef09da709587802e30ac2463faa6570bf04a847a5
MD5 da170fe317d41cc6c3574b799ae95c27
BLAKE2b-256 b9575262df953a6e3a1e3d992308d389fad65878c1957c695c21a0691b1b3808

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.6.1-cp310-none-win32.whl
  • Upload date:
  • Size: 493.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for oasysdb-0.6.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 c13c41f117b21273fc1af4e0704550dd81c40b3cb7013e2392e3529acacb6932
MD5 f409b7c195d5567a383c1aadb28ab5fc
BLAKE2b-256 6f2d9d5d615932142793557aacb6e210f0f833f9fe2e950ebc5dd1abfc427af2

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e6b31eb09cfd4e3115a6d0008153f546894b10d8bdf760ca1acd4552be7d64a
MD5 e389a6021cda51221e4adacd33af5466
BLAKE2b-256 a8a362395789a6e6d0e6e60c42de4aaaf40b74591fa6addeb5c2b289f6b2d179

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ae394cbf5a5f9a5da23001e576b2d8109715c76c969dc2aec2a58022590c078
MD5 01293226a91242540fa2e2e5ba575f7a
BLAKE2b-256 9f476db4bb09475e3ac60749791b9a847be6446244bc467bac105ee86d0a6884

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bd20d4deed0f7bc1cf46ab2c09755848e2f95985c30d2d8503dab67db3904aea
MD5 0d58efc747f04d9f70f1b3ca4751e05d
BLAKE2b-256 d3d175526dfde616e19aa8864c8c49c996425f7684cb1ae40aeb15154b251cf2

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fab64cdf238a4e618c1fca9345a60917125093537d44aac3884ec86f2742a11a
MD5 25693b97e818841feb4e0f50f466454a
BLAKE2b-256 4aabbb4cb8b505928507eb157e5117054fe14c7594629629164d97e358b095a9

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 aebc45214493193b604e9a89b4600fcd1e93c17d310c0fd7381974f41a8ee28d
MD5 6041d5a0e6460475619e617ee0f25ac2
BLAKE2b-256 38480ada4b5ba10e79267b7d8b81cea139b21275c2cb32523d2fe8302ebbe595

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 73bddc32e72df5e1d05b2746be668f3360603ec6e5406bc30873d30231a542a4
MD5 5762190bc0fcf7a09c03a905cce84944
BLAKE2b-256 ad7ec1bed64ed45660b9a6ec5bc38884ad87c32911b88e1fd430eb2dc7260b57

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.6.1-cp39-none-win32.whl
  • Upload date:
  • Size: 494.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for oasysdb-0.6.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 3468bbb613c511cb4bfb293fbeedfb087d18c5383649be58b3d4a600ae090038
MD5 0bcb455dfa8032843d1bf86f5b31489e
BLAKE2b-256 1899a4943a5426b2edd6ad8105f7d3ef7eb87017a8ed7c8cce0ea323c8574103

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 650a5807b7ca2210349d0adf71d74f9cfc77a0330c036808db5226b77a825eba
MD5 cdc8df16983a8b788b1ae3cf7033a647
BLAKE2b-256 7296d05951c23e710d19ab369fa3b114a8b112702aaa025d0c242abc399caa39

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec640e9ca5a35d2bdabd9c2e66ca66f98ceeba4f3adba0ab9ef5d331fd60a380
MD5 a2958df5f1b03039279a4fee7445a37a
BLAKE2b-256 5d93d7cce1f7207ee228ee1e701b01cd7e939139a1c2e4d3333b0f920cee1877

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 51e9d52a92305fad435dd31f9b79e512b2a9d1ccbeafed956f324b879aee27f7
MD5 25bed3f711d3ad6a58cb85cd8fc7d352
BLAKE2b-256 c82720619089e8e06b667500ae5a561b8d7568c90c99c1df2b29cbfc218f95e9

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 172efe1f6421452d2698e5dddf70e52514c447bf30aa464f86ac8c8096a21f99
MD5 7976d407627430dff98383d2b6798f5b
BLAKE2b-256 3570f8fbd631037b7bf13cdf393770dd11e5eff6fa0174895ace8776a923a6ac

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 61f83a8446d88c9e2e00bc63326b83715ccd017ddd6722ebeee6b61340ceeb6d
MD5 3e08ab05325cdff7f8ac37e92a45da68
BLAKE2b-256 a7c814a2dea36a8e72b33d8f92c5df0633dcbbeb8b18f1a132b0ebf756ab4c8c

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 0ff3507fd7abcad1168769488f4815ef99558bf4bd8cb2c1923570d32d5c5190
MD5 b7e2dff37ed1a6c0b09004f824373630
BLAKE2b-256 f3b2474515cd3459a89cba46aa524e6e106f3e108f86d456252b9fd202454f2e

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp38-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.6.1-cp38-none-win32.whl
  • Upload date:
  • Size: 494.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for oasysdb-0.6.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 66e59287ad9815c0a397e8430c16a711f83f0ede3b3717498fa2a1494e63598f
MD5 b6f121371be437300ff6ea1c419a190a
BLAKE2b-256 f14fd70025a53e86b6649c38a121a2c9b90f35ddc62ca99a77df1a8104beca7b

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ee49d346fdf48759aa8d995047d9e1226fced4e46d520ed6de54446b1c93e64
MD5 a630cb10a22de2c72ff4f82e377ef3e5
BLAKE2b-256 c7545bbf6c8954840be582313ae70162b6d9763f538e7a0568d385b34af2b34b

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b04a9087bc04e88e7ababb83db181530b99d5c86e6c30e224da334adeee0fa40
MD5 41bf5edd8389a507548852409adeafdc
BLAKE2b-256 800750690e56e1460ad625bdad169ca4af12b07f01013e5f5139240b0f0f879c

See more details on using hashes here.

File details

Details for the file oasysdb-0.6.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.6.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 30249af5365b879f29663b724b61c0688a6098336b38831e24e465995c5f7e76
MD5 f7705cb8a3cc3d853187f0d2ee54717f
BLAKE2b-256 57a688dd07a9d7740b7ad4162781c2bda56dfa3849bce1467fc4cbbf61ca0fc5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page