Skip to main content

Fast embedded vector database with incremental HNSW indexing.

Project description

OasysDB Use Case

GitHub Stars Discord Crates.io PyPI License Contributor Covenant

👋 Meet OasysDB

OasysDB is a lightweight and easy-to-use embedded vector database written in Rust. With its simple API, it requires no learning curve to understand and use. OasysDB also requires no server setup and configuration. It is designed to be embedded directly inside your AI application simply by adding it as a dependency.

# Rust via Crates.io
cargo add oasysdb

# Python via PyPI
pip install oasysdb

Use Cases

OasysDB is very flexible! You can use it for systems related with vector similarity search such as:

  • Local RAG (Retrieval-Augmented Generation) pipeline with an LLM and embedding model to generate a context-aware output.
  • Image similarity search engine to find similar images based on their semantic content. See Python demo.
  • Real-time product recommendation system to suggest similar products based on the product features or user preferences.
  • Add your use case here 😁

Features

Core Features

🔸 Embedded Database: Zero setup and no dedicated server or process required.

🔸 Optional Persistence: In-memory vector collections that can be persisted to disk.

🔸 Incremental Ops: Insert, modify, and delete vectors without rebuilding indexes.

🔸 Flexible Schema: Store additional and flexible metadata for each vector record.

Technical Features

🔹 Fast HNSW: Efficient vector similarity search with state-of-the-art algorithm.

🔹 Configurable Metric: Use Euclidean, Cosine, or other metric for your specific use-case.

🔹 Parallel Processing: Multi-threaded & SIMD-optimized vector distance calculation.

🔹 Built-in Incremental ID: No headache record management and efficient storage.

Design Philosophy

OasysDB is designed to be boring 😂

Simple and easy to use API with no learning curve. No worries about setting up a server or configuring the database. We want you to forget about the vector database stuff and actually focus on building your AI application fast.

Read more about the design philosophy of OasysDB in the Comprehensive Guide.

🚀 Quickstart with Rust

Rust-Banner.png

To get started with OasysDB in Rust, you need to add oasysdb to your Cargo.toml. You can do so by running the command below which will add the latest version of OasysDB to your project.

cargo add oasysdb

After that, you can use the code snippet below as a reference to get started with OasysDB. In short, use Collection to store your vector records or search similar vector and use Database to persist a vector collection to the disk.

use oasysdb::prelude::*;

fn main() {
    // Vector dimension must be uniform.
    let dimension = 128;

    // Replace with your own data.
    let records = Record::many_random(dimension, 100);

    let mut config = Config::default();

    // Optionally set the distance function. Default to Euclidean.
    config.distance = Distance::Cosine;

    // Create a vector collection.
    let collection = Collection::build(&config, &records).unwrap();

    // Optionally save the collection to persist it.
    let mut db = Database::new("data/test").unwrap();
    db.save_collection("vectors", &collection).unwrap();

    // Search for the nearest neighbors.
    let query = Vector::random(dimension);
    let result = collection.search(&query, 5).unwrap();

    for res in result {
        let (id, distance) = (res.id, res.distance);
        println!("{distance:.5} | ID: {id}");
    }
}

Dealing with Metadata Types

In OasysDB, you can store additional metadata for each vector which is useful to associate the vectors with other data. The code snippet below shows how to insert the Metadata to the Record or extract it.

use oasysdb::prelude::*;

fn main() {
    // Inserting a metadata value into a record.
    let data: &str = "This is an example.";
    let vector = Vector::random(128);
    let record = Record::new(&vector, &data.into());

    // Extracting the metadata value.
    let metadata = record.data.clone();
    let data = match metadata {
        Metadata::Text(value) => value,
        _ => panic!("Data is not a text."),
    };

    println!("{}", data);
}

Feature Flags

OasysDB provides several feature flags to enable or disable certain features. You can do this by adding the feature flags to your project Cargo.toml file. Below are the available feature flags and their descriptions:

  • json: Enables easy Serde's JSON conversion from and to the metadata type. This feature is very useful if you have a complex metadata type or if you use APIs that communicate using JSON.

  • gen: Enables the vector generator trait and modules to extract vector embeddings from your contents using OpenAI or other embedding models. This feature allows OasysDB to handle vector embedding extraction for you without separate dependencies.

🚀 Quickstart with Python

Python-Banner.png

OasysDB also provides a Python binding which allows you to add it directly to your project. You can install the Python library of OasysDB by running the command below:

pip install oasysdb

This command will install the latest version of OasysDB to your Python environment. After you're all set with the installation, you can use the code snippet below as a reference to get started with OasysDB in Python.

from oasysdb.prelude import *


if __name__ == "__main__":
    # Open the database.
    db = Database("data/example")

    # Replace with your own records.
    records = Record.many_random(dimension=128, len=100)

    # Create a vector collection.
    config = Config.create_default()
    collection = Collection.from_records(config, records)

    # Optionally, persist the collection to the database.
    db.save_collection("my_collection", collection)

    # Replace with your own query.
    query = Vector.random(128)

    # Search for the nearest neighbors.
    result = collection.search(query, n=5)

    # Print the result.
    print("Nearest neighbors ID: {}".format(result[0].id))

If you want to learn more about using OasysDB for real-world applications, you can check out the this Google Colab notebook which demonstrates how to use OasysDB to build a simple image similarity search engine: Image Search Engine with OasysDB

🎯 Benchmarks

OasysDB uses a built-in benchmarking suite using Rust's Criterion crate which we use to measure the performance of the vector database.

Currently, the benchmarks are focused on the performance of the collection's vector search functionality. We are working on adding more benchmarks to measure the performance of other operations.

If you are curious and want to run the benchmarks, you can use the command below to run the benchmarks. If you do run it, please share the results with us 😉

cargo bench

Memory Usage

OasysDB uses HNSW which is known to be a memory hog compared to other indexing algorithms. We decided to use it because of its performance even when storing large datasets of vectors with high dimension.

In the future, we might consider adding more indexing algorithms to make OasysDB more flexible and to cater to different use cases. If you have any suggestions of which indexing algorithms we should add, please let us know.

Anyway, if you are curious about the memory usage of OasysDB, you can use the command below to run the memory usage measurement script. You can tweak the parameters in the examples/measure-memory.rs file to see how the memory usage changes.

cargo run --example measure-memory

Quick Results

Even though the results may vary depending on the hardware and the dataset, we want to give you a quick idea of the performance of OasysDB. Here are some quick results from the benchmarks:

Collection size Embedding dimension Memory usage Search time
10,000 128 7MB 248.73µs
1,000,000 128 569MB 555.46µs
10,000 768 302MB 705.83µs
1,000,000 768 3,011MB 1.36ms
1,000,000 3,072 N/A 3.07ms
1,000,000 4,096 N/A 3.87ms

These results are from a machine with an Apple M3 CPU with 128GB of RAM. The dataset used for the benchmarks is a random dataset generated by the Record::many_random function with additional random usize as its metadata and a random search vector.

🤝 Contributing

The easiest way to contribute to this project is to star this project and share it with your friends. This will help us grow the community and make the project more visible to others.

If you want to go further and contribute your expertise, we will gladly welcome your code contributions. For more information and guidance about this, please see contributing.md.

If you have deep experience in the space but don't have the free time to contribute codes, we also welcome advices, suggestions, or feature requests. We are also looking for advisors to help guide the project direction and roadmap.

If you are interested about the project in any way, please join us on Discord. Help us grow the community and make OasysDB better 😁

Code of Conduct

We are committed to creating a welcoming community. Any participant in our project is expected to act respectfully and to follow the Code of Conduct.

Disclaimer

This project is still in the early stages of development. We are actively working on it and we expect the API and functionality to change. We do not recommend using this in production yet.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oasysdb-0.5.0.tar.gz (66.8 kB view details)

Uploaded Source

Built Distributions

oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded PyPymanylinux: glibc 2.12+ i686

oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded PyPymanylinux: glibc 2.12+ i686

oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded PyPymanylinux: glibc 2.12+ i686

oasysdb-0.5.0-cp312-none-win_amd64.whl (502.9 kB view details)

Uploaded CPython 3.12Windows x86-64

oasysdb-0.5.0-cp312-none-win32.whl (481.3 kB view details)

Uploaded CPython 3.12Windows x86

oasysdb-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.12+ i686

oasysdb-0.5.0-cp312-cp312-macosx_11_0_arm64.whl (672.6 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

oasysdb-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl (649.6 kB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

oasysdb-0.5.0-cp311-none-win_amd64.whl (504.8 kB view details)

Uploaded CPython 3.11Windows x86-64

oasysdb-0.5.0-cp311-none-win32.whl (483.2 kB view details)

Uploaded CPython 3.11Windows x86

oasysdb-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.12+ i686

oasysdb-0.5.0-cp311-cp311-macosx_11_0_arm64.whl (673.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

oasysdb-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl (651.9 kB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

oasysdb-0.5.0-cp310-none-win_amd64.whl (504.9 kB view details)

Uploaded CPython 3.10Windows x86-64

oasysdb-0.5.0-cp310-none-win32.whl (483.2 kB view details)

Uploaded CPython 3.10Windows x86

oasysdb-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ i686

oasysdb-0.5.0-cp310-cp310-macosx_11_0_arm64.whl (673.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

oasysdb-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl (651.9 kB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

oasysdb-0.5.0-cp39-none-win_amd64.whl (505.0 kB view details)

Uploaded CPython 3.9Windows x86-64

oasysdb-0.5.0-cp39-none-win32.whl (483.4 kB view details)

Uploaded CPython 3.9Windows x86

oasysdb-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

oasysdb-0.5.0-cp39-cp39-macosx_11_0_arm64.whl (673.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

oasysdb-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl (652.4 kB view details)

Uploaded CPython 3.9macOS 10.12+ x86-64

oasysdb-0.5.0-cp38-none-win_amd64.whl (505.1 kB view details)

Uploaded CPython 3.8Windows x86-64

oasysdb-0.5.0-cp38-none-win32.whl (483.4 kB view details)

Uploaded CPython 3.8Windows x86

oasysdb-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

oasysdb-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

oasysdb-0.5.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

File details

Details for the file oasysdb-0.5.0.tar.gz.

File metadata

  • Download URL: oasysdb-0.5.0.tar.gz
  • Upload date:
  • Size: 66.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0.tar.gz
Algorithm Hash digest
SHA256 2361d32917f3ce2013dff4e02086d928e7fc8c84e4ad9b43b6dfca18ca1ba45c
MD5 644ad0407932a4763c40dd5313acd4d5
BLAKE2b-256 55835947ad91598d9090d7fb291801849d6b527e21821533b7baa7a903f42b9f

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23aaa3c104b787d48efc04168908bde6ae044519891dcffc01aa6cc99d4b9221
MD5 256588a031fda4d4edee35ee692ae599
BLAKE2b-256 d49a421ffe28627b8e32965fe747aa84c0fcf180d00c495843db2192a5c5ee02

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fec6c0dac9c176f8cb84bcdbf6a3db6e670a564bf3841676cbdd22e214e865a
MD5 9c8f94e03953a209c4e8d821dff632b0
BLAKE2b-256 3c05c6576bf70638b808efcbefbe64c069a3f65a1705965c045b2fdb2ff0d5a6

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6778207a3bae052c9ef6690f39d077b6c55f133f408896eaa67022724598e9a4
MD5 c8f0fe900373c3064ed6d8fac8f3e162
BLAKE2b-256 7102aa9e74cc8d9794a5ef17adc6e016c41b1e5d70a7400ee3e14a35040d139b

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19e4a454be9a022ccd487e549a7f3a86347a644335af635cb08e5445fad66bb5
MD5 4182d9c1192245c4661255f80e201bbe
BLAKE2b-256 1f13f079b675a4253c04ed78349290eca915448455b93cbbb4023b8a8396045b

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31b043a4aa140cda405b14f842e0f46012839c5e1db2cca05265307d0fd6f4bd
MD5 7373779cb1772674951e31e9d6f443ce
BLAKE2b-256 279250ddc5922207e475d36dbbca9e89bc37aa5e7e120a01c24baec74c5ef4c8

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b559381aaefe42db4ff18e7833cf39f9cf5b95491a63ed7f5f97b70c18206010
MD5 015e1cce83c86421185779fe0a7715db
BLAKE2b-256 22ec2dbb8c81bdf36f0210f85efeb8d130f1bb67b5e8ad15ba4bf3eecd944b40

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f561f13c17a22d2ef22f07fdd534aa4eed76d7d0844e98beda47e0d5cda80c9
MD5 7a80dab7f92df0c04cd34a5203c92a97
BLAKE2b-256 6a41d2778a0e6e6905040e37b27af64cff8a477abb0e35ce97a4d443fe9cbb45

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5992ec3aec621a5d0709c41c58cef286b4ecd74c44db26dd53caaa6eaf15e0ad
MD5 94ba647cf3d0d40d1c6fe29a6c95977c
BLAKE2b-256 98aa92ab65d136787da9f409bdeecf273dd22e6121fd4b5064428b898a32d78f

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c2fa8e923ddd261bef370f4f3b7f87bfaabc69020d0fb8757c133867f35de038
MD5 1aa27652cd96b93d4c768d3c34ba32a0
BLAKE2b-256 95fadd2cb77d603fc3ff872f9eca84e918b7c011c2e3764cc2b3063e99646f60

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-none-win_amd64.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 502.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 889061cdc193bc484fef4be46edb056cd6ba484eedf9886856d72838dd5c820b
MD5 375851022683daf609f0e41b33efa4f6
BLAKE2b-256 ffd1759710ac3f59f4565e4750c587961712658c1410089a21359e1c17f78a07

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp312-none-win32.whl
  • Upload date:
  • Size: 481.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 dc997fc0753514a99edd73c855fda9757809a60629ddac2f8af640c1ef7c1ecd
MD5 3ed1a3cad26ed36530d89f10ab935ecc
BLAKE2b-256 054b059c278d0cf5987d228ae14ac6384e51284c2fd3a6ef8de9bf85b95e34da

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eefd7a55643e4c15c799ee5a4e38a411e7bb5a50cdc04615c5511d4f5d9ea9a2
MD5 e43bc47ec6b9ea62bfd0722fb8eb9cab
BLAKE2b-256 e6b0f346c29b6fa280a916e0ed685ed27638d52dcd5206051e928353fb50d209

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6be06c21373c80193b21fecbd0358061a7d9b0dd6c00adfeeb85873fa371c428
MD5 fc76a6e46608533edc987201ae5e32c3
BLAKE2b-256 51240b019f64c42b79cd5bcd780c87733950e3d66d8022b8981173eaf6d09bb8

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 784e78b1df1ef1512107af2a18e5d36115bb2e153868af1e3d25b3d85cbb8c5d
MD5 7ee3970be9f5bd80cf98064f8e0c64f6
BLAKE2b-256 d93f6366a035fd6ff6734d1a233dc212e28db77ef630d4bd0b9ae1f18f724b03

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 107ad488ad19e69d0be729e8ebbb91210f43be7c72e71ca0f0527ad27155aadd
MD5 f566c1ac10b2db9b8af632f01cb180e6
BLAKE2b-256 deaed5b37ca9dceacf65124a732de4dd4257a578ca539961662bd2024835f836

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5014e2588274e76663fef504ce823ce8fc90fb890655b533bd5b298529caa70a
MD5 27bb18c68fc9e45e97ef19b9f0827492
BLAKE2b-256 15134ee14a66dbbc4c40bc2f13787c6a777190da5e97af87c7464007ae03776d

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 504.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 5ef720cfaff7c36ed35f348d9c2e00a920409912186d06d61e74ac6f6cdf00ed
MD5 6cd95635fdc9839c8e3c8ea9702150c1
BLAKE2b-256 480eb760aef10429234349899a507a8227ac2a604757c69c4a3a5f2ca404b269

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp311-none-win32.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 090e1ba9905fc18926924869aee13218815f854d89b478c2c3fdd2a9c3909cc2
MD5 513a5ad6484ae35928e927e6b3922860
BLAKE2b-256 23e582bafdb8e59ca88a9b6bc63efe2371bc081330b6d855b1028e63df49ff18

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a23103071c6574b00e4f5d4db8707b5ced84a7e3f09d15cce73eca3535406cf3
MD5 86ebdaf3a64c6dd0c5124375bf654e5a
BLAKE2b-256 c8886c1f0400783d035c67d0c3f41310719a985118b89979a2a2386242f1b7d1

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e287dc435a6691aa379b382d57a9a599fae2e71c937bd4d8507ef0574f3c1d3a
MD5 f774fa83e438c3dc5102eb66e245f961
BLAKE2b-256 f67236cdd1b23beddb7e4822de33f8c943d3930cb692df2c95e5b7d70ecf9d18

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 be8c4b8bc5a7617b3ba2e033b9f465316046297e6bb857da6d5e875acad9e5a8
MD5 db62e1a6cab3f6ef96227418b75fb201
BLAKE2b-256 47e758b28210f94401d943f01ef20b5bba9ff9dad1cfd9135301322ff7ecf875

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c78f7ba6dc127bba1d67ab992e585d0b93c9cf2f7609491d3fd60191ab6d824f
MD5 0511a1a74563e4a656d3fff59440093a
BLAKE2b-256 1a2404b1520a57cc5ff46a9e1a093670d871871599ddfa548a13997c92402e7f

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 76a197b307eb1932c9d7ebc7f5553dd42242a414f94f27ba65d9debd7f68bc4b
MD5 225573bca13cb623b48c31e52d4812c9
BLAKE2b-256 0f3da27d5dc145808b40282250df1a8a7cc2ce4dee88ef1ca321a61d37567f1d

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 504.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 f223acb8f8c4719f866156f6471d40cc791235959861620efffa42abe747b3d1
MD5 5c39f64804a8af4b4c64a11121b53275
BLAKE2b-256 f432e6c12a216b45e3a51481dab20778ff0f1427c10cea397728756e00a36a4d

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp310-none-win32.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 7241cbc99fa5684b6d04a9a1da3f6b59dd729d3d3d64a4af12fac5aaffc7ed54
MD5 e19b7efab08365c2e2c8b4e59c58fee0
BLAKE2b-256 91b8c7acb6419aea0c15ed834611ffad4e91f86d818e78978f764bc4df42e0d5

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c97dabc3ed805c4a561d11d9f8002f91ef3cd737cf466b9bf79cb5b65af0bfdf
MD5 e9afb1f726ac30ab621d53f883453da3
BLAKE2b-256 39dbc87754fc60fadbfe05da7355fb651a43d79a5747f7bce10722efbcbe2c1a

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2caa09cd7fbe68714b70d48010366d11564d783c6da90ef332bd22092b74e334
MD5 75d14f2e5269a103355232d0e5661501
BLAKE2b-256 7c5598edd48187641e31818a7f3463bfe534f6dbe4593cd2e2d5df16c20f2122

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3eff6ff4196d8f0df65865058fc6b2b9638581a38267ada94c1746fa236b6ea9
MD5 72784c1a5e30121b0912253258651e24
BLAKE2b-256 0de440ec19f40caa4fa51b23365308679454ffb97304cf53b47647de85fa3f24

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa60ab9d02e47e5ade429de4e5cab231b412f46aa9e4bcc2deee8a8209ed97e9
MD5 f369cfa08d1b817671c53724693ff056
BLAKE2b-256 156e412ba5e201f236bf5050bbe0115ec1182e52e54e19c50e8a1862552ba30f

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ddb85aa4f693823b88f1fa41755c20d42d466035d562483f6fc9da9633d501c7
MD5 7ed2a300b5376aa9eb027dbac26301ad
BLAKE2b-256 59f349b159aee04354151d4163f0185c38b4f0a49006d00cebc13d9248e5beb1

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 505.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 7cafb938053f29803e24b5f248579d1f165798bd5b68436e0cc7fe7daa086618
MD5 577d5502fab53f2cdb0a16059d0da0de
BLAKE2b-256 c9d98da125612fceedb79439881289677d07812d0be1e536bb2825ed5d132c40

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp39-none-win32.whl
  • Upload date:
  • Size: 483.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 d6a894a648893c67afb9894b0afb3183538650455413c14d9db97ce874597195
MD5 35f07f47646e5ace438372be69d9e971
BLAKE2b-256 7b32eff2d9358f12de65ec3c5d924e09cee9f0f3f8d8e6585a9c6daa71e121f6

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3205c5915729f839c4b93225de2bbc76cdeac76c3dc925edb45dd5b077f6e39
MD5 c69dd52c1c9e40142ed72532cccdf286
BLAKE2b-256 a8805e9feb08d987fa3a919c5ff6b6187cc89d12bda8911b4a12e785a08be9dc

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f541824874bc9e4957a8b4f1e5d4cffa59c0223bf1258ad135bc2c18b770a197
MD5 c7c254ea046623a00ad3d63fb50c0d1f
BLAKE2b-256 9774bcb7c448fff203908c4c55e06d95e30e36de54bef06bd3b78c2a6c0b9a1e

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e26f2468abf71cb9dc00aaa230ae85dd50e52331695fea57e2650cf88918f26b
MD5 f92979bba053571557673a44e9ca8305
BLAKE2b-256 d64e1aa0c3119f085697a12d27f8f8b3a8aaacee0fb6fbbfaadca5f28c8b92ad

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0cc840cbacf4b39c26b6d64a589168d262c38b8c8f8e0e276edcada7f4a31081
MD5 d5aa75c253dd5d1b569a12348f97ba21
BLAKE2b-256 771798dde7f88600e28cb8e285f0c66f505759ca7392acaa7f099dce5aba8e64

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2e826fe8bfafbefbbd39356539912485405959e590e138b6fa1ad0e5782e4b5d
MD5 750e0da6f446c15ac97994abb17ec36d
BLAKE2b-256 ec229b5005500ab98057bd50aa31fdf1a58356bcbdb9cf023701a5b436582a2e

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 505.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2f4c46c5670c62eab053ec4f9fd51f82f1c8b4e4a62ce6fb236f574030f9d348
MD5 1af0254fdc7e1ad5f5994c73c41233b1
BLAKE2b-256 ee3399d5eb02810bdf7476fb2c6e2689eb11438ce542cfe1b4e3b40048c0af77

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp38-none-win32.whl.

File metadata

  • Download URL: oasysdb-0.5.0-cp38-none-win32.whl
  • Upload date:
  • Size: 483.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for oasysdb-0.5.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 b613f4fb0a98e6ab7a1aca59a66c6846c8a36a65e39ebdc5f34bae0f5278d8e7
MD5 9efe6f849df9878e1ab34415e3bdf9a7
BLAKE2b-256 3558c89c68616f71a72d284725695def6daab08ab450c1962f9940ab02cd3bef

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6ffaefe5c7d7ad9a950d68ff875e839b69e279d5684e88f31b3478c56e0d9b1
MD5 c927152c6d59af85350991323894d02a
BLAKE2b-256 53139c705888efa78faed537678c5980eaa9ea53e6373dc60ddd2c3002100898

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24dd41b6c54cc99b30030a00ad9312a39faaf2a07e7c74fe29a09e6b7354f7ea
MD5 f6d9c141ba0a560e5bf3f15030067c81
BLAKE2b-256 d75d1e9b9d039df8e8b17765afed10253c519e5467c8ebbf60ff79d15b877ba7

See more details on using hashes here.

File details

Details for the file oasysdb-0.5.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for oasysdb-0.5.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f97c56d805a5bf77092504c37f6e32a151bc593d066bcd01195fb664234c58b2
MD5 53c36e26a10e13583ed5e7b3f059db5f
BLAKE2b-256 b44444771328bcade84aa897c7bbb5f9feb008e5a6399a18fe95f28c9561a866

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page