Skip to main content

OntoNotes Normal Form Parser

Project description

Introduction

onf-parser is a lightweight pure Python library for parsing the OntoNotes Normal Form format (.onf – cf. section 6.3).

Installation

Note that Python >=3.7 is required due to our dependency on dataclasses.

pip install onf-parser

Usage

There are three top-level functions:

from onf_parser import parse_files, parse_file, parse_file_string
# read a single file
sections = parse_file('ontonotes/some/file.onf')
# or parse a raw string
sections = parse_file_string(s)
# read all .onf files in a single directory
files = parse_file('ontonotes/')

For each file, a list of Section objects (which correspond to documents for the purposes of annotation) will be available:

for filepath, sections in files:
    for section in sections:
        coref_chains = section.chains
        for chain in coref_chains:
            print(chain.type)
            print(chain.id)
            print(chain.mentions)
            for mention in chain.mentions:
                print(mention.sentence_id)
                print(mention.tokens)
        for sentence in section.sentences:
            print(sentence.plain_sentence)
            print(sentence.plain_sentence.string)

            print(sentence.treebanked_sentence)
            print(sentence.treebanked_sentence.string)
            print(sentence.treebanked_sentence.tokens)

            print(sentence.speaker_information)
            print(sentence.speaker_information.name)
            print(sentence.speaker_information.start_time)
            print(sentence.speaker_information.stop_time)

            print(sentence.tree)
            print(sentence.tree.tree_string)

            print(sentence.leaves)
            for leaf in sentence.leaves:
                print(leaf.token)
                print(leaf.token_id)

                # NER
                print(leaf.name)
                print(leaf.name.type)
                print(leaf.name.token_id_range)
                print(leaf.name.tokens)

                # Coreference
                print(leaf.coref)
                print(leaf.coref.type)
                print(leaf.coref.token_id_range)
                print(leaf.coref.tokens)

                # WordNet sense
                print(leaf.sense)
                print(leaf.sense.label)

                # PropBank
                print(leaf.prop.label)
                print(leaf.prop)
                for arg_label, arg_spans in leaf.prop.args.items():
                    print(arg_label)
                    for arg_span in arg_spans:
                        print(arg_span)

See model classes for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

onf_parser-0.2.3-py2.py3-none-any.whl (8.8 kB view details)

Uploaded Python 2Python 3

File details

Details for the file onf_parser-0.2.3-py2.py3-none-any.whl.

File metadata

  • Download URL: onf_parser-0.2.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.5

File hashes

Hashes for onf_parser-0.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5748eec425573c5f2eacf787f62641389e758b8f0ae576fe4ae35346dd5fa19a
MD5 fa5c4b383322ad53105c47642868fd2b
BLAKE2b-256 24b972ad5b67eda95c456b90fc58bb23f1bc142de5b632bfe93079f5ce852a11

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page