Efficient single-pass hyperdimensional classifier
Project description
onlinehd
Authors: Alejandro Hernández Cano, Mohsen Imani.
Installation
In order to install the package, simply run the following:
pip install onlinehd
Visit the PyPI project page for more information about releases.
Documentation
Read the documentation of this project.
Quick start
The following code generates dummy data and trains a OnlnineHD classification model with it.
>>> import onlinehd
>>> dim = 10000
>>> n_samples = 1000
>>> features = 100
>>> classes = 5
>>> x = torch.randn(n_samples, features) # dummy data
>>> y = torch.randint(0, classes, [n_samples]) # dummy data
>>> model = onlinehd.OnlineHD(classes, features, dim=dim)
>>> if torch.cuda.is_available():
... print('Training on GPU!')
... model = model.to('cuda')
... x = x.to('cuda')
... y = y.to('cuda')
...
Training on GPU!
>>> model.fit(x, y, epochs=10)
>>> ypred = model(x)
>>> ypred.size()
torch.Size([1000])
For more examples, see the example.py
script. Be aware that this script needs
pytorch
, sklearn
and numpy
to run.
Citation Request
If you use onlinehd code, please cite the following paper:
- Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, Mohsen Imani "OnlineHD: Robust, Efficient, and Single-Pass Online Learning Using Hyperdimensional System", IEEE/ACM Design Automation and Test in Europe Conference (DATE), 2021.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file onlinehd-0.1.2.tar.gz
.
File metadata
- Download URL: onlinehd-0.1.2.tar.gz
- Upload date:
- Size: 7.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.4 CPython/3.9.1 Linux/5.10.11-arch1-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
97b5721c73092c88a42a4ae12faefff65729dbf8fa659296900bc44de1e954d8
|
|
MD5 |
80bade5620d970757318af92546d87e2
|
|
BLAKE2b-256 |
83d3acf1baa56e88698a93a4abd4cb637d78452cd6ea630f48198a47fb49fbfc
|
File details
Details for the file onlinehd-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: onlinehd-0.1.2-py3-none-any.whl
- Upload date:
- Size: 8.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.4 CPython/3.9.1 Linux/5.10.11-arch1-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
0096a39b9c6a79c864db370c423c8d8b7b308d9eb98ec7e76e57b8aa99d2fa12
|
|
MD5 |
fb89babf08197c8dfa1e18c35dbd3832
|
|
BLAKE2b-256 |
cb05e170bef130a68f50e11ab0085a03b5955df23998d862faf5ef39eac68271
|