ONNX Runtime Python bindings
Project description
ONNX Runtime enables high-performance evaluation of trained machine learning (ML) models while keeping resource usage low. Building on Microsoft’s dedication to the Open Neural Network Exchange (ONNX) community, it supports traditional ML models as well as Deep Learning algorithms in the ONNX-ML format. Documentation is available at Python Bindings for ONNX Runtime.
Example
The following example demonstrates an end-to-end example in a very common scenario. A model is trained with scikit-learn but it has to run very fast in a optimized environment. The model is then converted into ONNX format and ONNX Runtime replaces scikit-learn to compute the predictions.
# Train a model.
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = RandomForestClassifier()
clr.fit(X_train, y_train)
# Convert into ONNX format with onnxmltools
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([1, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("rf_iris.onnx", "wb") as f:
f.write(onx.SerializeToString())
# Compute the prediction with ONNX Runtime
import onnxruntime as rt
import numpy
sess = rt.InferenceSession("rf_iris.onnx")
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]
Changes
0.3.0
C-API, Linux support for Dotnet Nuget package, Cuda 9.1 support.
0.2.1
C-API, Linux support for Dotnet Nuget package, Cuda 10.0 support (patch to 0.2.0).
0.2.0
C-API, Linux support for Dotnet Nuget package, Cuda 10.0 support
0.1.5
GA release as part of open sourcing onnxruntime (patch to 0.1.4).
0.1.4
GA release as part of open sourcing onnxruntime.
0.1.3
Fixes a crash on machines which do not support AVX instructions.
0.1.2
First release on Ubuntu 16.04 for CPU and GPU with Cuda 9.1 and Cudnn 7.0, supports runtime for deep learning models architecture such as AlexNet, ResNet, XCeption, VGG, Inception, DenseNet, standard linear learner, standard ensemble learners, and transform scaler, imputer.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file onnxruntime-0.3.0-cp37-cp37m-win_amd64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0e7d9f13a5bf028094431c31e02624b9f21f91bce02382d77ffaac0a69dd992f
|
|
| MD5 |
4365efa66fc3897fb7c4b53577051f27
|
|
| BLAKE2b-256 |
b93fdbb5cebea90480407491918cbd00ffa45a1532ce192cca9e849f2acf8378
|
File details
Details for the file onnxruntime-0.3.0-cp37-cp37m-manylinux1_x86_64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp37-cp37m-manylinux1_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9e55cc18ef0f2d75867e9315f4801d43f043befe6621ac4efbe342cb9a9898bd
|
|
| MD5 |
9c7276998b3befeb319893082ed950c0
|
|
| BLAKE2b-256 |
ec9a90d8f93ec5865a3b756d23ed5e43d0affe2483711cca816067a4592dff29
|
File details
Details for the file onnxruntime-0.3.0-cp37-cp37m-macosx_10_7_x86_64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp37-cp37m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.7m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8826bc4abb024feff15c4ed667f33e5d8141337156a3b29477739bd78127cf0f
|
|
| MD5 |
aab21ae3d250c24fd0b1237d562f1b1a
|
|
| BLAKE2b-256 |
5e77814612caac4c7c69c3458fb3bf70f4c31ec9420876c66a174b3f27183805
|
File details
Details for the file onnxruntime-0.3.0-cp36-cp36m-win_amd64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0d360de4ecd5d8045fd33b26d45567e99ba39b201f8be8107e902d761ed3f2e7
|
|
| MD5 |
c9cf960762fc2546cefe6724e9afca6a
|
|
| BLAKE2b-256 |
bb742c8a7d4ef6549525599c661a1cc0d95ec5523e35812258ad981446aa0815
|
File details
Details for the file onnxruntime-0.3.0-cp36-cp36m-manylinux1_x86_64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
117e1e5b40593407bebab619dded59d69c8bad407cec04bbce34dc5e91f3ab50
|
|
| MD5 |
30733751d709afecdc21b4a428ca8bae
|
|
| BLAKE2b-256 |
0da7dcec3fce9709492e3b5ea8b0dbda5a343bafab2adced2b001a14ce3bdd8f
|
File details
Details for the file onnxruntime-0.3.0-cp36-cp36m-macosx_10_7_x86_64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.6m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e14c783ac59870be1e46dfa9b890fc4890c5dd7079da48928a24b0b9f5c7903a
|
|
| MD5 |
190544dd63118484a8ccdb071f7493b9
|
|
| BLAKE2b-256 |
5be5fc53bd8861219f4b46a1b43d3b1fac2e8694610e425eb81e053c5598ff14
|
File details
Details for the file onnxruntime-0.3.0-cp35-cp35m-win_amd64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp35-cp35m-win_amd64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.5m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e0bbb1f4500e31966c6f11486db81851332b1419202631637c2a8709355bf1fd
|
|
| MD5 |
fa5c62f5a1eb023b6197b3ae4a41bf0d
|
|
| BLAKE2b-256 |
fbfc3e946df70a8b00eca339d7f6387ac07deb2da90e84ce502573b5744811c0
|
File details
Details for the file onnxruntime-0.3.0-cp35-cp35m-manylinux1_x86_64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp35-cp35m-manylinux1_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
27f6e9e2d36f8ba3be4f65ee3b34720d0dd5394a7c66c87aa871028fc2863d5b
|
|
| MD5 |
96155e214c9baadb63d777ab18bebb6a
|
|
| BLAKE2b-256 |
1a04439221d2aab4ff54923a97891240bce4856495a4de2459099b5a7a1de7b2
|
File details
Details for the file onnxruntime-0.3.0-cp35-cp35m-macosx_10_6_x86_64.whl.
File metadata
- Download URL: onnxruntime-0.3.0-cp35-cp35m-macosx_10_6_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.5m, macOS 10.6+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
05386d8f88b6485067f40fcbf7343fe869e49af63edce573ebfbe64b4d3fd5a4
|
|
| MD5 |
89ef9dd7df2f18548627793cff28e214
|
|
| BLAKE2b-256 |
d43190d91aec62b6df3352bfa1b978e3d61a76b50f09109a4e7adaebf7c41d56
|