Skip to main content

Command-line client for OpenAI API

Project description

Installation

To install OpenAI CLI in Python virtual environment, run:

pip install openai-cli

Token authentication

OpenAI API requires authentication token, which can be obtained on this page: https://beta.openai.com/account/api-keys

Provide token to the CLI either through a command-line argument (-t/--token <TOKEN>) or through an environment variable (OPENAI_API_KEY).

Usage

Currently only text completion API is supported.

Example usage:

$ echo "Are cats faster than dogs?" | openai complete -
It depends on the breed of the cat and dog. Generally,
cats are faster than dogs over short distances,
but dogs are better at sustained running.

Interactive mode supported (Press Ctrl+C to exit):

$ openai repl
Prompt: Can generative AI replace humans?

No, generative AI cannot replace humans.
While generative AI can be used to automate certain tasks,
it cannot replace the creativity, intuition, and problem-solving
skills that humans possess.
Generative AI can be used to supplement human efforts,
but it cannot replace them.

Prompt: ^C

Run without arguments to get a short help message:

$ openai
Usage: openai [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  complete  Return OpenAI completion for a prompt from SOURCE.
  repl      Start interactive shell session for OpenAI completion API.

Build a standalone binary using pex and move it into PATH:

$ make openai && mv openai ~/bin/
$ openai repl
Prompt:

Alternative API URL

CLI invokes https://api.openai.com/v1/completions by default. To override the endpoint URL, set OPENAI_API_URL environment variable.

Example usage

Here’s an example usage scenario, where we first create a Python module with a Fibonacci function implementation, and then generate a unit test for it:

$ mkdir examples
$ touch examples/__init__.py
$ echo "Write Python function to calculate Fibonacci numbers" | openai complete - | black - > examples/fib.py
$ (echo 'Write unit tests for this Python module named "fib":\n'; cat examples/fib.py) | openai complete - | black - > examples/test_fib.py
$ pytest -v examples/test_fib.py
============================== test session starts ==============================

examples/test_fib.py::TestFibonacci::test_eighth_fibonacci_number PASSED                                 [ 10%]
examples/test_fib.py::TestFibonacci::test_fifth_fibonacci_number PASSED                                  [ 20%]
examples/test_fib.py::TestFibonacci::test_first_fibonacci_number PASSED                                  [ 30%]
examples/test_fib.py::TestFibonacci::test_fourth_fibonacci_number PASSED                                 [ 40%]
examples/test_fib.py::TestFibonacci::test_negative_input PASSED                                          [ 50%]
examples/test_fib.py::TestFibonacci::test_ninth_fibonacci_number PASSED                                  [ 60%]
examples/test_fib.py::TestFibonacci::test_second_fibonacci_number PASSED                                 [ 70%]
examples/test_fib.py::TestFibonacci::test_seventh_fibonacci_number PASSED                                [ 80%]
examples/test_fib.py::TestFibonacci::test_sixth_fibonacci_number PASSED                                  [ 90%]
examples/test_fib.py::TestFibonacci::test_third_fibonacci_number PASSED                                  [100%]

=============================== 10 passed in 0.02s ==============================

$ cat examples/fib.py
def Fibonacci(n):
    if n < 0:
        print("Incorrect input")
    # First Fibonacci number is 0
    elif n == 1:
        return 0
    # Second Fibonacci number is 1
    elif n == 2:
        return 1
    else:
        return Fibonacci(n - 1) + Fibonacci(n - 2)
$ cat examples/test_fib.py
import unittest
from .fib import Fibonacci


class TestFibonacci(unittest.TestCase):
    def test_negative_input(self):
        self.assertEqual(Fibonacci(-1), None)

    def test_first_fibonacci_number(self):
        self.assertEqual(Fibonacci(1), 0)

    def test_second_fibonacci_number(self):
        self.assertEqual(Fibonacci(2), 1)

    def test_third_fibonacci_number(self):
        self.assertEqual(Fibonacci(3), 1)

    def test_fourth_fibonacci_number(self):
        self.assertEqual(Fibonacci(4), 2)

    def test_fifth_fibonacci_number(self):
        self.assertEqual(Fibonacci(5), 3)

    def test_sixth_fibonacci_number(self):
        self.assertEqual(Fibonacci(6), 5)

    def test_seventh_fibonacci_number(self):
        self.assertEqual(Fibonacci(7), 8)

    def test_eighth_fibonacci_number(self):
        self.assertEqual(Fibonacci(8), 13)

    def test_ninth_fibonacci_number(self):
        self.assertEqual(Fibonacci(9), 21)


if __name__ == "__main__":
    unittest.main()
$ (echo "Add type annotations for this Python code"; cat examples/fib.py) | openai complete - | black - | tee tmp && mv tmp examples/fib.py
def Fibonacci(n: int) -> int:
    if n < 0:
        print("Incorrect input")
    # First Fibonacci number is 0
    elif n == 1:
        return 0
    # Second Fibonacci number is 1
    elif n == 2:
        return 1
    else:
        return Fibonacci(n - 1) + Fibonacci(n - 2)
$ mypy examples/fib.py
examples/fib.py:1: error: Missing return statement  [return]
Found 1 error in 1 file (checked 1 source file)
$ (echo "Fix mypy warnings in this Python code"; cat examples/fib.py; mypy examples/fib.py) | openai complete - | black - | tee tmp && mv tmp examples/fib.py
def Fibonacci(n: int) -> int:
    if n < 0:
        print("Incorrect input")
    # First Fibonacci number is 0
    elif n == 1:
        return 0
    # Second Fibonacci number is 1
    elif n == 2:
        return 1
    else:
        return Fibonacci(n - 1) + Fibonacci(n - 2)
    return None  # Added return statement
$ mypy examples/fib.py
examples/fib.py:12: error: Incompatible return value type (got "None", expected "int")  [return-value]
Found 1 error in 1 file (checked 1 source file)
$ (echo "Fix mypy warnings in this Python code"; cat examples/fib.py; mypy examples/fib.py) | openai complete - | black - | tee tmp && mv tmp examples/fib.py
def Fibonacci(n: int) -> int:
    if n < 0:
        print("Incorrect input")
    # First Fibonacci number is 0
    elif n == 1:
        return 0
    # Second Fibonacci number is 1
    elif n == 2:
        return 1
    else:
        return Fibonacci(n - 1) + Fibonacci(n - 2)
    return 0  # Changed return statement to return 0
$ mypy examples/fib.py
Success: no issues found in 1 source file
$ (echo "Rewrite these tests to use pytest.parametrized"; cat examples/test_fib.py) | openai complete - | black - | tee tmp && mv tmp examples/test_fib.py
import pytest
from .fib import Fibonacci


@pytest.mark.parametrize(
    "n, expected",
    [(1, 0), (2, 1), (3, 1), (4, 2), (5, 3), (6, 5), (7, 8), (8, 13), (9, 21), (10, 34)],
)
def test_fibonacci(n, expected):
    assert Fibonacci(n) == expected

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openai_cli-1.0.1.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

openai_cli-1.0.1-py2.py3-none-any.whl (9.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file openai_cli-1.0.1.tar.gz.

File metadata

  • Download URL: openai_cli-1.0.1.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.8

File hashes

Hashes for openai_cli-1.0.1.tar.gz
Algorithm Hash digest
SHA256 fc68a39952ceb04a43ecc27b9d43f848f5f537da57ac30bd941d084f805c10a4
MD5 ea9f2ad67c4ae0c68370521ee3b4b881
BLAKE2b-256 422fd3562cea333d46dc147dee2b93eb41e04f60885d97340f6a63a7677b5e7d

See more details on using hashes here.

File details

Details for the file openai_cli-1.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: openai_cli-1.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.8

File hashes

Hashes for openai_cli-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9708c1e61c8b042e5607e6af1e6dc97b026cff6bb925ca8bd8547d6872f0ee62
MD5 46acab1f925f8205656e827568787e33
BLAKE2b-256 0e1dfcf004db72d7f5554b1a847e46d56bd80336bbd534d92e6b9571c5684f02

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page