Skip to main content

A helper library for estimating tokens used by messages sent through OpenAI Chat Completions API.

Project description

openai-messages-token-helper

A helper library for estimating tokens used by messages and building messages lists that fit within the token limits of a model. Currently designed to work with the OpenAI GPT models (including GPT-4 turbo with vision). Uses the tiktoken library for tokenizing text and the Pillow library for image-related calculations.

Installation

Install the package:

python3 -m pip install openai-messages-token-helper

Usage

The library provides the following functions:

build_messages

Build a list of messages for a chat conversation, given the system prompt, new user message, and past messages. The function will truncate the history of past messages if necessary to stay within the token limit.

Arguments:

  • model (str): The model name to use for token calculation, like gpt-3.5-turbo.
  • system_prompt (str): The initial system prompt message.
  • tools (List[openai.types.chat.ChatCompletionToolParam]): (Optional) The tools that will be used in the conversation. These won't be part of the final returned messages, but they will be used to calculate the token count.
  • tool_choice (openai.types.chat.ChatCompletionToolChoiceOptionParam): (Optional) The tool choice that will be used in the conversation. This won't be part of the final returned messages, but it will be used to calculate the token count.
  • new_user_content (str | List[openai.types.chat.ChatCompletionContentPartParam]): (Optional) The content of new user message to append.
  • past_messages (list[openai.types.chat.ChatCompletionMessageParam]): (Optional) The list of past messages in the conversation.
  • few_shots (list[openai.types.chat.ChatCompletionMessageParam]): (Optional) A few-shot list of messages to insert after the system prompt.
  • max_tokens (int): (Optional) The maximum number of tokens allowed for the conversation.
  • fallback_to_default (bool): (Optional) Whether to fallback to default model/token limits if model is not found. Defaults to False.

Returns:

  • list[openai.types.chat.ChatCompletionMessageParam]

Example:

from openai_messages_token_helper import build_messages

messages = build_messages(
    model="gpt-35-turbo",
    system_prompt="You are a bot.",
    new_user_content="That wasn't a good poem.",
    past_messages=[
        {
            "role": "user",
            "content": "Write me a poem",
        },
        {
            "role": "assistant",
            "content": "Tuna tuna I love tuna",
        },
    ],
    few_shots=[
        {
            "role": "user",
            "content": "Write me a poem",
        },
        {
            "role": "assistant",
            "content": "Tuna tuna is the best",
        },
    ]
)

count_tokens_for_message

Counts the number of tokens in a message.

Arguments:

  • model (str): The model name to use for token calculation, like gpt-3.5-turbo.
  • message (openai.types.chat.ChatCompletionMessageParam): The message to count tokens for.
  • default_to_cl100k (bool): Whether to default to the CL100k token limit if the model is not found.

Returns:

  • int: The number of tokens in the message.

Example:

from openai_messages_token_helper import count_tokens_for_message

message = {
    "role": "user",
    "content": "Hello, how are you?",
}
model = "gpt-4"
num_tokens = count_tokens_for_message(model, message)

count_tokens_for_image

Count the number of tokens for an image sent to GPT-4-vision, in base64 format.

Arguments:

  • image (str): The base64-encoded image.

Returns:

  • int: The number of tokens used up for the image.

Example:

Count the number of tokens for an image sent to GPT-4-vision:

```python
from openai_messages_token_helper import count_tokens_for_image

image = "..."
num_tokens = count_tokens_for_image(image)

get_token_limit

Get the token limit for a given GPT model name (OpenAI.com or Azure OpenAI supported).

Arguments:

  • model (str): The model name to use for token calculation, like gpt-3.5-turbo (OpenAI.com) or gpt-35-turbo (Azure).
  • default_to_minimum (bool): Whether to default to the minimum token limit if the model is not found.

Returns:

  • int: The token limit for the model.

Example:

from openai_messages_token_helper import get_token_limit

model = "gpt-4"
max_tokens = get_token_limit(model)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openai_messages_token_helper-0.1.11.tar.gz (396.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file openai_messages_token_helper-0.1.11.tar.gz.

File metadata

File hashes

Hashes for openai_messages_token_helper-0.1.11.tar.gz
Algorithm Hash digest
SHA256 547f24a33f8a5a5f1cfd85c572ccedb5d1e523aaf24b31c597f90b4ef030ac16
MD5 36c2e0960251daf41a248ae425a94711
BLAKE2b-256 74ee4775cba4b490b4b1cd1800e9754954e8feab1fc1cdac5a4284130d6d7f4f

See more details on using hashes here.

File details

Details for the file openai_messages_token_helper-0.1.11-py3-none-any.whl.

File metadata

File hashes

Hashes for openai_messages_token_helper-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 8bc45c9248e14bdd0e425379e740c3164e40eb48cdb9d0f12ae5d1dcadac1d06
MD5 096a4f59f348e157d7249b501284d8b7
BLAKE2b-256 b4509c50d29fa215d43adfd974e84daff2ad2c73dbad17ffcdd3a66db991ab4b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page