Skip to main content

OpenElectricity Python Client

Project description

OpenElectricity Python Client

logo

[!WARNING] This project and the v4 API are currently under active development.

A Python client for the OpenElectricity API, providing access to electricity and energy network data and metrics for Australia.

[!NOTE] API key signups are currently waitlisted and will be released gradually.

To obtain an API key visit platform.openelectricity.org.au

For documentation visit docs.openelectricity.org.au

Features

  • Synchronous and asynchronous API clients
  • Fully typed with comprehensive type annotations
  • Automatic request retries and error handling
  • Context manager support
  • Modern Python (3.10+) with full type annotations
  • Direct conversion to Pandas and Polars DataFrames

Installation

# Install base package
pip install openelectricity

# or with uv (recommended)
uv add openelectricity

# Install with data analysis support (Polars/Pandas)
uv add "openelectricity[analysis]"

Quick Start

First, set your API key in the environment:

# Set your API key
export OPENELECTRICITY_API_KEY=your-api-key

# Optional: Override API server (defaults to production)
export OPENELECTRICITY_API_URL=http://localhost:8000/v4

Then in your code:

from datetime import datetime, timedelta
from openelectricity import OEClient
from openelectricity.types import DataMetric, UnitFueltechType, UnitStatusType

# Calculate date range
end_date = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)
start_date = end_date - timedelta(days=7)

# Using context manager (recommended)
with OEClient() as client:
    # Get operating solar and wind facilities
    facilities = client.get_facilities(
        network_id=["NEM"],
        status_id=[UnitStatusType.OPERATING],
        fueltech_id=[UnitFueltechType.SOLAR_UTILITY, UnitFueltechType.WIND],
    )

    # Get network data for NEM
    response = client.get_network_data(
        network_code="NEM",
        metrics=[DataMetric.POWER, DataMetric.ENERGY],
        interval="1d",
        date_start=start_date,
        date_end=end_date,
        secondary_grouping="fueltech_group",
    )

    # Print results
    for series in response.data:
        print(f"\nMetric: {series.metric}")
        print(f"Unit: {series.unit}")

        for result in series.results:
            print(f"\n  {result.name}:")
            print(f"  Fuel Tech Group: {result.columns.fueltech_group}")
            for point in result.data:
                print(f"    {point.timestamp}: {point.value:.2f} {series.unit}")

For async usage:

from openelectricity import AsyncOEClient
import asyncio

async def main():
    async with AsyncOEClient() as client:
        # Get operating solar and wind facilities
        facilities = await client.get_facilities(
            network_id=["NEM"],
            status_id=[UnitStatusType.OPERATING],
            fueltech_id=[UnitFueltechType.SOLAR_UTILITY, UnitFueltechType.WIND],
        )

        # Get network data
        response = await client.get_network_data(
            network_code="NEM",
            metrics=[DataMetric.POWER],
            interval="1d",
            secondary_grouping="fueltech_group",
        )
        # Process response...

asyncio.run(main())

Data Analysis

The client provides built-in support for converting API responses to popular data analysis formats.

Using with Polars

# Make sure you've installed with analysis extras
# uv add "openelectricity[analysis]"

from openelectricity import OEClient
from openelectricity.types import DataMetric

with OEClient() as client:
    response = client.get_network_data(
        network_code="NEM",
        metrics=[DataMetric.POWER, DataMetric.ENERGY],
        interval="1d",
        secondary_grouping="fueltech_group",
    )

    # Convert to Polars DataFrame
    df = response.to_polars()

    # Get metric units
    units = response.get_metric_units()

    # Analyze data
    energy_by_fueltech = (
        df.group_by("fueltech_group")
        .agg(
            pl.col("energy").sum().alias("total_energy_mwh"),
            pl.col("power").mean().alias("avg_power_mw"),
        )
        .sort("total_energy_mwh", descending=True)
    )

Using with Pandas

# Make sure you've installed with analysis extras
# uv add "openelectricity[analysis]"

from openelectricity import OEClient
from openelectricity.types import DataMetric

with OEClient() as client:
    response = client.get_network_data(
        network_code="NEM",
        metrics=[DataMetric.POWER, DataMetric.ENERGY],
        interval="1d",
        secondary_grouping="fueltech_group",
    )

    # Convert to Pandas DataFrame
    df = response.to_pandas()

    # Get metric units
    units = response.get_metric_units()

    # Analyze data
    energy_by_fueltech = (
        df.groupby("fueltech_group")
        .agg({
            "energy": "sum",
            "power": "mean",
        })
        .sort_values("energy", ascending=False)
    )

Development

  1. Clone the repository

  2. Install development dependencies:

    make install
    
  3. Run tests:

    make test
    
  4. Format code:

    make format
    
  5. Run linters:

    make lint
    

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openelectricity-0.9.2.tar.gz (195.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

openelectricity-0.9.2-py3-none-any.whl (19.7 kB view details)

Uploaded Python 3

File details

Details for the file openelectricity-0.9.2.tar.gz.

File metadata

  • Download URL: openelectricity-0.9.2.tar.gz
  • Upload date:
  • Size: 195.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.20

File hashes

Hashes for openelectricity-0.9.2.tar.gz
Algorithm Hash digest
SHA256 44938f6e7cfc0f383416ffd81ad337b982061bb8ca2def66fa9f53a99811fcbb
MD5 f55915500b99f66938588b32970477f0
BLAKE2b-256 d90fda2d4a15b6f4e358e77b4b0dad48f6248d08bd9a1e3fc88b4e66496c104c

See more details on using hashes here.

File details

Details for the file openelectricity-0.9.2-py3-none-any.whl.

File metadata

File hashes

Hashes for openelectricity-0.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e22a59dd744a924e0831f0ec6c96f733fab6415a58c3c01fb900199e701422a2
MD5 387cb73e18987e69c26bb321994b4a8b
BLAKE2b-256 5760e30ac1279727e24919fa10f9bf8633e4965243a313c4186ef7c38784ba6b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page