Skip to main content

OpenInference Haystack Instrumentation

Project description

OpenInference Haystack Instrumentation

Python auto-instrumentation library for LLM applications implemented with Haystack.

Haystack Pipelines and Components (ex. PromptBuilder, OpenAIGenerator, etc.) are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for monitoring, such as arize-phoenix.

Installation

pip install openinference-instrumentation-haystack

Quickstart

This quickstart shows you how to instrument your Haystack-orchestrated LLM application

Through your terminal, install required packages.

pip install openinference-instrumentation-haystack haystack-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

You can install Phoenix and start it with the following terminal commands:

pip install arize-phoenix
python -m phoenix.server.main serve

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

Try the following in a Python file.

Set up HaystackInstrumentor to trace your application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.haystack import HaystackInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
import os

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_KEY_HERE"

# Set up the tracer, using Arize Phoenix as the endpoint
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

# Instrument the Haystack application
HaystackInstrumentor().instrument()

Set up a simple Pipeline with a template using OpenAIGenerator.

from haystack import Pipeline
from haystack.components.generators import OpenAIGenerator

# Initialize the pipeline
pipeline = Pipeline()

# Initialize the OpenAI generator component
llm = OpenAIGenerator(model="gpt-3.5-turbo")

# Add the generator component to the pipeline
pipeline.add_component("llm", llm)

# Define the question
question = "What is the location of the Hanging Gardens of Babylon?"

# Run the pipeline with the question
response = pipeline.run({"llm": {"prompt": question}})

print(response)

Now, on the Phoenix UI on your browser, you should see the traces from your Haystack application. Specifically, you can see attributes from the execution of the OpenAIGenerator.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_haystack-0.1.24.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_haystack-0.1.24.tar.gz
Algorithm Hash digest
SHA256 14aea1e46d16415e373dd3f65d4e2ae94a1aa705b7b6967e606ab6e5dbb2cc18
MD5 2db3005b8e97897ceed3c9fce27fa97f
BLAKE2b-256 b115d750f65dff58524fb7c1d679bae91948447e1a3547bc32e662e6d3ac7fcc

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_haystack-0.1.24-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_haystack-0.1.24-py3-none-any.whl
Algorithm Hash digest
SHA256 55628441fdccb13904c7bc90e3621d18d346acf9bf3884b9fac672a6dba9ad2f
MD5 f35b1ed97e05458e34165b7c1b84d96d
BLAKE2b-256 962f0bad4a4840de04defa9f82fc6ffaa48b02dd19aa085fdf08701ba349cb59

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page