Skip to main content

OpenInference Mistral AI Instrumentation

Project description

OpenInference Mistral AI Instrumentation

PyPI Version

Python autoinstrumentation library for MistralAI's Python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-mistralai

Quickstart

In this example we will instrument a small program that uses the MistralAI chat completions API and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-mistralai mistralai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the MistralAIInstrumentor and configure the tracer to send traces to Phoenix.

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from openinference.instrumentation.mistralai import MistralAIInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))
trace_api.set_tracer_provider(tracer_provider)

MistralAIInstrumentor().instrument()


if __name__ == "__main__":
    client = MistralClient()
    response = client.chat(
        model="mistral-large-latest",
        messages=[
            ChatMessage(
                content="Who won the World Cup in 2018?",
                role="user",
            )
        ],
    )
    print(response.choices[0].message.content)

Since we are using MistralAI, we must set the MISTRAL_API_KEY environment variable to authenticate with the MistralAI API.

export MISTRAL_API_KEY=[your_key_here]

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_mistralai-1.3.3.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-1.3.3.tar.gz
Algorithm Hash digest
SHA256 a55472a52dfa179058b851f2e502346a3cc1acadb023dd5b66b77c542369480a
MD5 0d05e9680210832cee324536b25b2a1a
BLAKE2b-256 129340e5f7b951fe309893f0fc4ff615264e021a3ebfc63cbe3815fd6b0f8cb3

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_mistralai-1.3.3-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-1.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f7323f4de35dc4aacf80be40d105a2f800f3ff7f9e0404b052d51c657e0d33e0
MD5 349d72ec41e6223d60e13edc1e61de63
BLAKE2b-256 c0f08e5678d39ff0cac31f2093f194a2510c8cccf443442df01bbab8042aaff9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page