Skip to main content

Provides a Python implementation of the data model for Open Job Description's template schemas.

Project description

Open Job Description - Models For Python

pypi python license

Open Job Description is a flexible open specification for defining render jobs which are portable between studios and render management solutions. This package provides a Python implementation of the data model for Open Job Description's template schemas. It can parse, validate, create JSON/Yaml documents for the Open Job Description specification, and more. A main use-case that this library targets is interoperability by creating applications to translate a Job from Open Job Description to the render management software of your choice.

For more information about Open Job Description and our goals with it, please see the Open Job Description Wiki on GitHub.

Compatibility

This library requires:

  1. Python 3.9 or higher; and
  2. Linux, MacOS, or Windows operating system.

Versioning

This package's version follows Semantic Versioning 2.0, but is still considered to be in its initial development, thus backwards incompatible versions are denoted by minor version bumps. To help illustrate how versions will increment during this initial development stage, they are described below:

  1. The MAJOR version is currently 0, indicating initial development.
  2. The MINOR version is currently incremented when backwards incompatible changes are introduced to the public API.
  3. The PATCH version is currently incremented when bug fixes or backwards compatible changes are introduced to the public API.

Contributing

We encourage all contributions to this package. Whether it's a bug report, new feature, correction, or additional documentation, we greatly value feedback and contributions from our community.

Please see CONTRIBUTING.md for our contributing guidelines.

Example Usage

Reading and Validating a Job Template

To validate a job template, you can read the JSON or YAML input into Python data structures and then pass the result to decode_job_template. By default, this will accept templates of any supported version number with no extensions enabled. Use decode_environment_template for environment templates.

To accept extensions in templates, provide the list of the names you support. See the Open Job Description 2023-09 specification for the list of extensions available.

from openjd.model import DocumentType, decode_job_template, document_string_to_object

# String containing the json of the job template
template_string = """specificationVersion: jobtemplate-2023-09
name: DemoJob
steps:
  - name: DemoStep
    script:
      actions:
        onRun:
          command: python
          args: ["-c", "print('Hello')"]
"""

# You can use 'json.loads' or 'yaml.safe_load' directly as well
template_object = document_string_to_object(
    document=template_string,
    document_type=DocumentType.YAML
)

# Raises a DecodeValidationError if it fails.
job_template = decode_job_template(template=template_object, supported_extensions=["TASK_CHUNKING"])

Once you have the Open Job Description model object, you can use the model_to_object function to convert it into an object suitable for converting to JSON or YAML.

import json
from openjd.model import model_to_object

obj = model_to_object(model=job_template)
print(json.dumps(obj, indent=2))

Creating Template Model Objects

As an alternative to assembling full job templates as raw data following the specification data model, you can use the library to construct model objects of components, such as for StepTemplates, and then assemble the result into a job template. The parse_model function provides a way to do this.

To call parse_model, you will need to provide the list of extensions you want to enable as the supported_extensions argument. Individual model objects can accept inputs differently depending on what extensions are requested in the job template, and the model parsing context holds that list. The functions decode_job_template and decode_environment_template create this context from top-level template fields, but when using parse_model to process interior model types you must provide it explicitly.

import json
from openjd.model import parse_model, model_to_object
from openjd.model.v2023_09 import StepTemplate

extensions_list = ["TASK_CHUNKING"]

step_template = parse_model(
    model=StepTemplate,
    obj={
        "name": "DemoStep",
        "script": {
            "actions": {"onRun": {"command": "python", "args": ["-c", "print('Hello world!')"]}}
        },
    },
    supported_extensions=extensions_list,
)

obj = model_to_object(model=step_template)
print(json.dumps(obj, indent=2))

You can also construct the individual elements of the template from the model object types. This can be more effort than using parse_model depending on how the enabled extensions affect processing. You will need to create a ModelParsingContext object to hold the extensions list, and pass it to any model object constructors that need it.

import json
from openjd.model import model_to_object
from openjd.model.v2023_09 import (
    StepTemplate,
    StepScript,
    StepActions,
    Action,
    ArgString,
    CommandString,
    ModelParsingContext,
)

context = ModelParsingContext(supported_extensions=["TASK_CHUNKING"])

step_template = StepTemplate(
    name="DemoStep",
    script=StepScript(
        actions=StepActions(
            onRun=Action(
                command=CommandString("python", context=context),
                args=[
                    ArgString("-c", context=context),
                    ArgString("print('Hello world!')", context=context),
                ],
            )
        )
    ),
)

obj = model_to_object(model=step_template)
print(json.dumps(obj, indent=2))

Creating a Job from a Job Template

import os
from pathlib import Path
from openjd.model import (
    DecodeValidationError,
    create_job,
    decode_job_template,
    preprocess_job_parameters
)

job_template_path = Path("/absolute/path/to/job/template.json")
job_template = decode_job_template(
    template={
        "name": "DemoJob",
        "specificationVersion": "jobtemplate-2023-09",
        "parameterDefinitions": [
            { "name": "Foo", "type": "INT" }
        ],
        "steps": [
            {
                "name": "DemoStep",
                "script": {
                    "actions": {
                        "onRun": { "command": "python", "args": [ "-c", "print(r'Foo={{Param.Foo}}')" ] }
                    }
                }
            }
        ]
    }
)
try:
    parameters = preprocess_job_parameters(
        job_template=job_template,
        job_parameter_values={
            "Foo": "12"
        },
        job_template_dir=job_template_path.parent,
        current_working_dir=Path(os.getcwd())
    )
    job = create_job(
        job_template=job_template,
        job_parameter_values=parameters
    )
except (DecodeValidationError, RuntimeError) as e:
    print(str(e))

Working with Step dependencies

from openjd.model import (
    StepDependencyGraph,
    create_job,
    decode_job_template
)

job_template = decode_job_template(
    template={
        "name": "DemoJob",
        "specificationVersion": "jobtemplate-2023-09",
        "steps": [
            {
                "name": "Step1",
                "script": {
                    "actions": {
                        "onRun": { "command": "python", "args": [ "-c", "print('Step1')" ] }
                    }
                }
            },
            {
                "name": "Step2",
                "dependencies": [ { "dependsOn": "Step1" }, { "dependsOn": "Step3" }],
                "script": {
                    "actions": {
                        "onRun": { "command": "python", "args": [ "-c", "print('Step2')" ] }
                    }
                }
            },
            {
                "name": "Step3",
                "script": {
                    "actions": {
                        "onRun": { "command": "echo", "args": [ "Step3" ] }
                    }
                }
            },
        ]
    }
)
job = create_job(job_template=job_template, job_parameter_values={})
dependency_graph = StepDependencyGraph(job=job)

for step in job.steps:
    step_node = dependency_graph.step_node(stepname=step.name)
    if step_node.in_edges:
        name_list = ', '.join(edge.origin.step.name for edge in step_node.in_edges)
        print(f"Step '{step.name}' depends upon: {name_list}")
    if step_node.out_edges:
        name_list = ', '.join(edge.dependent.step.name for edge in step_node.out_edges)
        print(f"The following Steps depend upon '{step.name}': {name_list}")

print(f"\nSteps in topological order: {[step.name for step in dependency_graph.topo_sorted()]}")
# The following Steps depend upon 'Step1': Step2
# Step 'Step2' depends upon: Step1, Step3
# The following Steps depend upon 'Step3': Step2

# Steps in topological order: ['Step1', 'Step3', 'Step2']

Working with a Step's Tasks

from openjd.model import (
    StepParameterSpaceIterator,
    create_job,
    decode_job_template
)

job_template = decode_job_template(
    template={
        "name": "DemoJob",
        "specificationVersion": "jobtemplate-2023-09",
        "steps": [
            {
                "name": "DemoStep",
                "parameterSpace": {
                    "taskParameterDefinitions": [
                        { "name": "Foo", "type": "INT", "range": "1-5" },
                        { "name": "Bar", "type": "INT", "range": "1-5" }
                    ],
                    "combination": "(Foo, Bar)"
                },
                "script": {
                    "actions": {
                        "onRun": {
                            "command": "python",
                            "args": [ "-c", "print(f'Foo={{Task.Param.Foo}}, Bar={{Task.Param.Bar}}"]
                        }
                    }
                }
            },
        ]
    }
)
job = create_job(job_template=job_template, job_parameter_values={})
for step in job.steps:
    iterator = StepParameterSpaceIterator(space=step.parameterSpace)
    print(f"Step '{step.name}' has {len(iterator)} Tasks")
    for param_set in iterator:
        print(param_set)
# Step 'DemoStep' has 5 Tasks
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='1'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='1')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='2'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='2')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='3'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='3')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='4'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='4')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='5'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='5')}

Downloading

You can download this package from:

Verifying GitHub Releases

See Verifying GitHub Releases for more information.

Security

We take all security reports seriously. When we receive such reports, we will investigate and subsequently address any potential vulnerabilities as quickly as possible. If you discover a potential security issue in this project, please notify AWS/Amazon Security via our vulnerability reporting page or directly via email to AWS Security. Please do not create a public GitHub issue in this project.

License

This project is licensed under the Apache-2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openjd_model-0.9.0.tar.gz (82.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

openjd_model-0.9.0-py3-none-any.whl (95.8 kB view details)

Uploaded Python 3

File details

Details for the file openjd_model-0.9.0.tar.gz.

File metadata

  • Download URL: openjd_model-0.9.0.tar.gz
  • Upload date:
  • Size: 82.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for openjd_model-0.9.0.tar.gz
Algorithm Hash digest
SHA256 8ca596e2691bedc08e0ab3c871f92a49b3b3dc0a033b59003f543b9975e45b6b
MD5 5a9c55b8196f78cca4756e15b012ca66
BLAKE2b-256 cad9ac53bf581f41f36b55efd567580f9b36a6b7e212dde5e9c05cde1136f1f6

See more details on using hashes here.

Provenance

The following attestation bundles were made for openjd_model-0.9.0.tar.gz:

Publisher: release_publish.yml on OpenJobDescription/openjd-model-for-python

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file openjd_model-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: openjd_model-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 95.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for openjd_model-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6b1d47a21d53ea6595d1f531746cf3547adf81d49cf3bd2d73b9205477a35b05
MD5 61f4d08f41f687abef6fbdd10d922627
BLAKE2b-256 cdb1bdcfbcf0de09331bf1bc4d6f44145705ddadaf5d5fe26a8d7234d579032e

See more details on using hashes here.

Provenance

The following attestation bundles were made for openjd_model-0.9.0-py3-none-any.whl:

Publisher: release_publish.yml on OpenJobDescription/openjd-model-for-python

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page