Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2024.6.0-17404-cp312-cp312-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino-2024.6.0-17404-cp312-cp312-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino-2024.6.0-17404-cp312-cp312-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino-2024.6.0-17404-cp312-cp312-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino-2024.6.0-17404-cp311-cp311-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2024.6.0-17404-cp311-cp311-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino-2024.6.0-17404-cp311-cp311-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2024.6.0-17404-cp311-cp311-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino-2024.6.0-17404-cp310-cp310-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2024.6.0-17404-cp310-cp310-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino-2024.6.0-17404-cp310-cp310-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2024.6.0-17404-cp310-cp310-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino-2024.6.0-17404-cp39-cp39-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2024.6.0-17404-cp39-cp39-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino-2024.6.0-17404-cp39-cp39-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2024.6.0-17404-cp39-cp39-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino-2024.6.0-17404-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f7177d9a734a61a0708bcd706592f59fc2377d8efbb0bf9f8a33edfd2998a45d
MD5 1a430010ce8e352908c36e865d46ef78
BLAKE2b-256 00bc2f80abc2662a7a400492f3bbc5f87ca0d536f1183a9374b848c02b8836ef

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 17cbdae3b069d9a13389b43a15b521a86fef75f350cfd0d992cc1780a6123788
MD5 fc8d11a06c3337f3ec01548381b9e257
BLAKE2b-256 d195dfde7088dd8efa71da1be66a630cdb8a1a5d728b107c46aad955d6841ac0

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d0390f4ab9b8f27814cf0feeddb0bba449ae8cd99933c2c2fae3011d33973b3
MD5 a79f231c194a0ef0c5b0992eed936a86
BLAKE2b-256 de9ed517214cce924577f9c6b18a3de6c3a919c456e58876ea0cfe6781e78f6d

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2acfe89f61ec18d608c79147cedea6ba85d80783723ab9a9416891b74b15785e
MD5 08111d6f13b460440160ea828ca475c3
BLAKE2b-256 3e345d38a8101e5a1a0f27ca99b7e7325b2d03e456fb33a3df1d4b4b5b973482

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 151c6010f0613ace29087bf864dc5dd1db0afa25ab87379c735f85500545b167
MD5 26b65cb84167785c76cb3f5b4c62d376
BLAKE2b-256 8598237174ae4faffa3f3bf954da8bb73a53b8f0c3040490b163fb132d64eefe

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4a94ef27022d56a159ea8677e5561bdd6f0d6c6237736e13c0f7cde71224ce7f
MD5 af1f2ea8c52522540723fb6de1a91462
BLAKE2b-256 15efa502a446fe8edaf1bf8fe846aa6e972b7f981f1e9901b552edf7b4ce1f09

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 ff5f871162299906fb517d5c9ded79f464a0341d8e2d55a037d4f9e38eed8652
MD5 95e7fe5ed90df3cf92b9af7741f86a4e
BLAKE2b-256 bb00b5f8970a59182213e313eb319d2aba7c5b81bded9a0fee71345b5e74cd21

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 444a6d3a746dd728654877993c30582faefcad2868c80ec261839a144b8925bc
MD5 8e6470ea429ec2352b00acce18c1e627
BLAKE2b-256 6bc4ec78885d4046511892dc55ba3013787044381fb6e5a1fd0373b0fb7c1e98

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d59ccc2df4a8c8515f30683f6cc0091c5b4e6a01a71ebfb1dc8f2ebdb5c83f4
MD5 bea9b5b30cb5155f76e7922024ed18e0
BLAKE2b-256 bef38d310b4a2bc3c12b188d56094b749d55701e02d3201cf65cdf242af4865b

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9150c75e19606a2f2ab411271c79031726980fb6870b96445db1faca5ab64f5f
MD5 97369153fe5c12119b78775c0dfb8c57
BLAKE2b-256 b6948cd6305bfb6aeb5bdebfc645f8a2b31cfe77063a691195d278a75b01d2fa

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c6c6a40a890b51007b20cf97d81783c4b43edfbcd4aabb06b6b04b7f2fb3137f
MD5 669a955cea0cd692d24b7a5f28f326d0
BLAKE2b-256 cdafb5ed9448c53ead637d8096f6f30168ed2d5e1e2da8612ab58da44659d422

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 89c866fa87ddeccb982252e7d1c8516101a4acb95aaebac7e43f450112cb6942
MD5 f23b3a074e74edd4cd904ec7dd20e9de
BLAKE2b-256 9064314c75aa20bfdb9ea77dc4e2a2e3f269d393c7d46dc470af19ecf107abbe

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c25d6820e960c08c0cc8d7823e9e6e395d762bc603772af14f0a576fab1628eb
MD5 03a380ee881f8330651296d005ddf26b
BLAKE2b-256 d2f832a5921990ba874525095d27cac02b8487deb919f607cab1895ad2cc8681

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb94f4ca9c1857bda2c5b510e519db20ea246958dbd76ddc38c133e2216231a5
MD5 dcb818af9e48ae01409234cd91f8ba88
BLAKE2b-256 5ecde04d7af314ef83cdbcb35a78b902b186b9d6ba206985edb53d5a9fc5ca1d

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c3477e833541df4f316240491d9df157c20a81487991748eb33e02e534009999
MD5 f23ea80da356ea7c44b0c0e69c7f35bd
BLAKE2b-256 beea238192fae3e196d564138463016d2ffa52c0b6a1973e8c7c60622ffa3aa1

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 46d3e20838c918668ec10ae124e92d56ff47a7c14da0d9d19d01d91fc9dece94
MD5 2813d8b6a0ff84ea4362675b168252da
BLAKE2b-256 f3d5bc97bd05ea3d6b15af887096253a4efdc2548b0d83009c4d2d7d580c80d4

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 263496653200270b8a17456dc7bc67a198ed29b601b0ad7280d90783ba918d66
MD5 146189e13c61687f6632aff7cb21fe20
BLAKE2b-256 394c29c6dcf9738c9f622d8f73efd356171198c6c3a7b05a62034b5f8bc1de07

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05a436e2526bf6775b487712ab4a6decf7afe04183109bc7b129b95205ec4247
MD5 0248d6a6d914927fa08315e587757e52
BLAKE2b-256 c7ee82734f9828cba094919341ee0b71c3c9eb556d056722982e379948830c1c

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac812efa9c139387db534498a1e980103a35b9b2b5f3b2d1ae6ed43db51b4bba
MD5 f30c065270caf234e66464505b694286
BLAKE2b-256 2e7d34694241f8de97788364f15ec4d551892a7b131d7a1b9bcfcb5a3a5c5828

See more details on using hashes here.

File details

Details for the file openvino-2024.6.0-17404-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.6.0-17404-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 989c803d1f8e6d12ee8d2e3e8c7d56189d96688433b2238270dbfbf64f163f18
MD5 ddce08c675b4c8ff57763b3864181d16
BLAKE2b-256 fce1a014d168f445f7b60137041940ff3adbc72a4fd483db913451347d7e7ecf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page