Skip to main content

OpenVINO(TM) Runtime

Project description

Open-source software toolkit for optimizing and deploying deep learning models.

DocumentationBlogKey FeaturesTutorialsIntegrationsBenchmarksGenerative AI

PyPI Status Anaconda Status brew Status

PyPI Downloads Anaconda Downloads brew Downloads

  • Inference Optimization: Boost deep learning performance in computer vision, automatic speech recognition, generative AI, natural language processing with large and small language models, and many other common tasks.
  • Flexible Model Support: Use models trained with popular frameworks such as PyTorch, TensorFlow, ONNX, Keras, PaddlePaddle, and JAX/Flax. Directly integrate models built with transformers and diffusers from the Hugging Face Hub using Optimum Intel. Convert and deploy models without original frameworks.
  • Broad Platform Compatibility: Reduce resource demands and efficiently deploy on a range of platforms from edge to cloud. OpenVINO™ supports inference on CPU (x86, ARM), GPU (Intel integrated & discrete GPU) and AI accelerators (Intel NPU).
  • Community and Ecosystem: Join an active community contributing to the enhancement of deep learning performance across various domains.

Check out the OpenVINO Cheat Sheet and Key Features for a quick reference.

Installation

Get your preferred distribution of OpenVINO or use this command for quick installation:

pip install -U openvino

Check system requirements and supported devices for detailed information.

Tutorials and Examples

OpenVINO Quickstart example will walk you through the basics of deploying your first model.

Learn how to optimize and deploy popular models with the OpenVINO Notebooks📚:

Discover more examples in the OpenVINO Samples (Python & C++) and Notebooks (Python).

Here are easy-to-follow code examples demonstrating how to run PyTorch and TensorFlow model inference using OpenVINO:

PyTorch Model

import openvino as ov
import torch
import torchvision

# load PyTorch model into memory
model = torch.hub.load("pytorch/vision", "shufflenet_v2_x1_0", weights="DEFAULT")

# convert the model into OpenVINO model
example = torch.randn(1, 3, 224, 224)
ov_model = ov.convert_model(model, example_input=(example,))

# compile the model for CPU device
core = ov.Core()
compiled_model = core.compile_model(ov_model, 'CPU')

# infer the model on random data
output = compiled_model({0: example.numpy()})

TensorFlow Model

import numpy as np
import openvino as ov
import tensorflow as tf

# load TensorFlow model into memory
model = tf.keras.applications.MobileNetV2(weights='imagenet')

# convert the model into OpenVINO model
ov_model = ov.convert_model(model)

# compile the model for CPU device
core = ov.Core()
compiled_model = core.compile_model(ov_model, 'CPU')

# infer the model on random data
data = np.random.rand(1, 224, 224, 3)
output = compiled_model({0: data})

OpenVINO supports the CPU, GPU, and NPU devices and works with models from PyTorch, TensorFlow, ONNX, TensorFlow Lite, PaddlePaddle, and JAX/Flax frameworks. It includes APIs in C++, Python, C, NodeJS, and offers the GenAI API for optimized model pipelines and performance.

Generative AI with OpenVINO

Get started with the OpenVINO GenAI installation and refer to the detailed guide to explore the capabilities of Generative AI using OpenVINO.

Learn how to run LLMs and GenAI with Samples in the OpenVINO™ GenAI repo. See GenAI in action with Jupyter notebooks: LLM-powered Chatbot and LLM Instruction-following pipeline.

Documentation

User documentation contains detailed information about OpenVINO and guides you from installation through optimizing and deploying models for your AI applications.

Developer documentation focuses on the OpenVINO architecture and describes building and contributing processes.

OpenVINO Ecosystem

OpenVINO Tools

Integrations

  • 🤗Optimum Intel - grab and use models leveraging OpenVINO within the Hugging Face API.
  • Torch.compile - use OpenVINO for Python-native applications by JIT-compiling code into optimized kernels.
  • ExecuTorch - use ExecuTorch with OpenVINO to optimize and run AI models efficiently.
  • OpenVINO LLMs inference and serving with vLLM​ - enhance vLLM's fast and easy model serving with the OpenVINO backend.
  • OpenVINO Execution Provider for ONNX Runtime - use OpenVINO as a backend with your existing ONNX Runtime code.
  • LlamaIndex - build context-augmented GenAI applications with the LlamaIndex framework and enhance runtime performance with OpenVINO.
  • LangChain - integrate OpenVINO with the LangChain framework to enhance runtime performance for GenAI applications.
  • Keras 3 - Keras 3 is a multi-backend deep learning framework. Users can switch model inference to the OpenVINO backend using the Keras API.

Check out the Awesome OpenVINO repository to discover a collection of community-made AI projects based on OpenVINO!

Performance

Explore OpenVINO Performance Benchmarks to discover the optimal hardware configurations and plan your AI deployment based on verified data.

Contribution and Support

Check out Contribution Guidelines for more details. Read the Good First Issues section, if you're looking for a place to start contributing. We welcome contributions of all kinds!

You can ask questions and get support on:

Resources

Telemetry

OpenVINO™ collects software performance and usage data for the purpose of improving OpenVINO™ tools. This data is collected directly by OpenVINO™ or through the use of Google Analytics 4. You can opt-out at any time by running the command:

opt_in_out --opt_out

More Information is available at OpenVINO™ Telemetry.

License

OpenVINO™ Toolkit is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.


* Other names and brands may be claimed as the property of others.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

openvino-2025.4.1-20426-cp314-cp314t-win_amd64.whl (42.0 MB view details)

Uploaded CPython 3.14tWindows x86-64

openvino-2025.4.1-20426-cp314-cp314t-manylinux2014_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.14t

openvino-2025.4.1-20426-cp314-cp314t-macosx_11_0_arm64.whl (33.2 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

openvino-2025.4.1-20426-cp314-cp314t-macosx_10_15_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

openvino-2025.4.1-20426-cp314-cp314-win_amd64.whl (41.8 MB view details)

Uploaded CPython 3.14Windows x86-64

openvino-2025.4.1-20426-cp314-cp314-manylinux2014_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.14

openvino-2025.4.1-20426-cp314-cp314-macosx_11_0_arm64.whl (32.9 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

openvino-2025.4.1-20426-cp314-cp314-macosx_10_15_x86_64.whl (37.7 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

openvino-2025.4.1-20426-cp313-cp313-win_amd64.whl (41.8 MB view details)

Uploaded CPython 3.13Windows x86-64

openvino-2025.4.1-20426-cp313-cp313-manylinux_2_35_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.35+ ARM64

openvino-2025.4.1-20426-cp313-cp313-manylinux2014_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.13

openvino-2025.4.1-20426-cp313-cp313-macosx_11_0_arm64.whl (32.9 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

openvino-2025.4.1-20426-cp313-cp313-macosx_10_15_x86_64.whl (37.7 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

openvino-2025.4.1-20426-cp312-cp312-win_amd64.whl (41.8 MB view details)

Uploaded CPython 3.12Windows x86-64

openvino-2025.4.1-20426-cp312-cp312-manylinux_2_35_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.35+ ARM64

openvino-2025.4.1-20426-cp312-cp312-manylinux2014_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.12

openvino-2025.4.1-20426-cp312-cp312-macosx_11_0_arm64.whl (32.9 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

openvino-2025.4.1-20426-cp312-cp312-macosx_10_15_x86_64.whl (37.7 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

openvino-2025.4.1-20426-cp311-cp311-win_amd64.whl (41.8 MB view details)

Uploaded CPython 3.11Windows x86-64

openvino-2025.4.1-20426-cp311-cp311-manylinux_2_35_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.35+ ARM64

openvino-2025.4.1-20426-cp311-cp311-manylinux2014_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.11

openvino-2025.4.1-20426-cp311-cp311-macosx_11_0_arm64.whl (32.8 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

openvino-2025.4.1-20426-cp311-cp311-macosx_10_15_x86_64.whl (37.6 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

openvino-2025.4.1-20426-cp310-cp310-win_amd64.whl (41.8 MB view details)

Uploaded CPython 3.10Windows x86-64

openvino-2025.4.1-20426-cp310-cp310-manylinux_2_35_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.35+ ARM64

openvino-2025.4.1-20426-cp310-cp310-manylinux2014_x86_64.whl (50.3 MB view details)

Uploaded CPython 3.10

openvino-2025.4.1-20426-cp310-cp310-macosx_11_0_arm64.whl (32.8 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

openvino-2025.4.1-20426-cp310-cp310-macosx_10_15_x86_64.whl (37.6 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314t-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 1f4b38357a88c81a0976525821240dc3e21aeaccee94590d97d62fd5a70836da
MD5 bf4ba58ac99fcb62e246e84c16fcf40e
BLAKE2b-256 66346a4e0e89f49f08e90020e6aa9df283bbd4b0311efcad30097decc43624f2

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314t-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314t-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 840a853c3879879fe465caca41e8bdc21a4e5eda51fb2347f2a7d450f9a5de2f
MD5 25a0ea9fd99cfb0fd0bd6267c492e00a
BLAKE2b-256 49ed194a559f77893c7208ce6168890726cea04707114c8eaa6e090f343a4ae0

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 facd552e978926e5f084ee49d90b44746e5d90abc00ec237d9a50b1144cd9a51
MD5 9354d53447e3613f327d93be7018513b
BLAKE2b-256 206f1326055d48b4e7447149cb07158dbf8d3812a85af5826f59a2f51aab1b73

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f95086869c276fca0a819acc0dd483a90450541be9d4432b01a4efd07e0e2b53
MD5 75ed2e8d853b3ad8f0946da71d7139f8
BLAKE2b-256 fe44ba24b4b1c9f0dc9e3474c532452d8777da198e820b7d6770f1af77f62fb8

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 922ab6a53cc832fca07f7da40511ad89dfe5572df596a3944990777147f8fbdd
MD5 049612d8197fe167227531fac0cbea68
BLAKE2b-256 1162c23fdd85bfa1d5aae890cfbfd355f2539c181e79bdfeb8d3e506a06977a2

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35498cb7fdae04bcb255637ed1162aa05afd266268effc6fb5b1acb3d56fd0a4
MD5 68b1c8035dd11057d64bdd822aa2ab65
BLAKE2b-256 0d3a641acacdcbd4ad440592d3caf11e1ecc90e653d0b82ed1571ea16e14d8df

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87e3451ea9590b181020ec7fdb2c6e8a5700fd679d834b017433dab577d7538a
MD5 a5d6f9f2802207f39b729ca0d16dd15d
BLAKE2b-256 0556ab685085a4a0e8321b0c64ed67fb3f7ea995d90e0d38c5d11d382c627bdc

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ea79341a1a4f9215de6f5052addadc724b7789c5c23be2815876675bf9e6d1a9
MD5 9a619aa3fb6d6ac507216283fcb59460
BLAKE2b-256 36cb8fbf8bac4d7a217905410bb98be22db7c9a738b4674bcb32d576905cf9cb

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a28eef35e3ed497c3238eb8f3d1ee90647c449707a8b0a7630758cd15555d8dd
MD5 8c796a8a00e173854277015b8652aaa2
BLAKE2b-256 3ce5da52a86cc5f1c86871002712429cdcca0c0dbff12dfbce730b05db60340b

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp313-cp313-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp313-cp313-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 94c80dfd144eb2b5ea075e7127d59ec7160c567ce1d9a68167aa147a4aa50e0e
MD5 4eeb6b1fb2e08648c72662d37ad85036
BLAKE2b-256 67848b3e5d5599ec093b92f3b7d80323862fd33dbe309267b71df30b932cba85

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp313-cp313-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp313-cp313-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68f8d6cfd74c7a74d68a62c8156830ddaa5b9f1f782d3643def83f659c0a6671
MD5 49c6339cc17abc6b317d44452ae4b71d
BLAKE2b-256 d776099c34ac7563a350325efe6dbc91b5cc20f0aa2331a6e036f2da262bab57

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5dd7947a63c89a4b7133a0cecb7b641f05e5ba22133b99241542884ab59117ef
MD5 4e668fd222199123d6d1b0cd58d31e9c
BLAKE2b-256 a4b92a53eb9f0e9854a9be5f7cd4938c60a8cc7c5683f0fc08aa6ff7c87f5221

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 526578080e4f593361b2beb03c3549a6a4446b7acfad19ff8b43b27837fa0fc7
MD5 ff202efb327fa1b387c9804ce76b1e39
BLAKE2b-256 6613b00fa1dc7c6829b10c595031ad9cf883ba0f3af0ebbb4f0c39eec74587b1

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c50293d1463698012eaa526dcc83f841b85a3f4952eea4c9445c83e0346f8e80
MD5 97701f3b71ff24793ee505a29a4c6d5d
BLAKE2b-256 64c2582bd6d01fc6588bfe35c0f363d294a54daa4587cafe30e932fa51420d04

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp312-cp312-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp312-cp312-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 9fb7d45c8bb6c1ea9f90a18b6c9e18c4d3ce0d249198b6d9544b446285a33d3b
MD5 694bbd2d355c66db70cc8e246ec31fd5
BLAKE2b-256 2eb46c8f68db079b4a140c301c00f9c361df011b4d1205bbdb4cff93f9192348

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88f074286d420c1a1a95e7f2ba11109a899f2f3b3fd818cfe1e47ead22cc7e45
MD5 b55dbc4e4a4671fa577555de5a248e43
BLAKE2b-256 8a91807f4e288969bc696dee2e56d7269abffb56626249642effb8ec2ab7d424

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d082e73af653a40b97efaa8219adf62c60f32060b9929ebcb60d7f14e79e4f1
MD5 0befdb7fc56b76583483172e15816b4f
BLAKE2b-256 a07957b35b05875e9155d8802815ad2c93bdc46e7c8883ce53109b7ba95f9d8d

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8994fcc9082fe4aed1ed2a6e531280de38d7293943c00284560b854945d5af9b
MD5 ae75bd0308c53c1b3ae7e0880eeda4fe
BLAKE2b-256 a89f77da5039032063747dcf39434662f31d914fd515de86a20a405eea315c53

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 695f9b5cdb1bc6315383548517e9836b7580220b711ca9417a034ce55028bf85
MD5 128e8646ca8de2d01bebd57d0ce2e6d6
BLAKE2b-256 37a54fcef1515b893b503f4ac54d7b17668fde9cdbed1c06cd8b2f798833cab4

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp311-cp311-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp311-cp311-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 86d2d7c94cd3d29d4080cd105a3af50d3497a348b0e3414c2c04a2532feb4c12
MD5 8126d25b953d0d5ba85a375037d31c24
BLAKE2b-256 bddc797b7874184d7c0b54cceef8c5a9066ef681e0235df6e8f496a1338dd4a6

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c552a68c094b0d75f48b7c19cbd3482c44e4e267821897dcb7c9f7c36ba5f88b
MD5 63f86763fcc6ea1731daef77ac3f66c7
BLAKE2b-256 3886084a1d7e69c309e1e6a2c48a374cd78c99bed5acd74b9a3fb5653b151a71

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12c482011835d72341f038021129036089c6571f8d713810caaeba88750062e8
MD5 3b433ad0d59b27b41ed072f8747455e8
BLAKE2b-256 b3808f0682271baef15e5baf469b2d1400fefbbc23a963f0dbcded5400c7b60b

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ee8ce8ebf22d407ce3b50f7926ee9b2fb9b17d131bae4bee68eba3bb5bbee203
MD5 795a3f09260866bf2e067a5914ebb776
BLAKE2b-256 21135e75a1ff33473e2c59502068cd3997b70dcc5f5c0e227de136394c5c7a74

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1147b86c96535fbc362ac1980bfe726272c4ae3952280fbb55f7de8a9cef4b7a
MD5 5c39e6f6c457d86a9490fa6ceba41879
BLAKE2b-256 18b567a40ffd6504b2c7a7dec8fa5b6e235d17364f1354e50929e6909e3b6438

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp310-cp310-manylinux_2_35_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp310-cp310-manylinux_2_35_aarch64.whl
Algorithm Hash digest
SHA256 ee82dd3c0ed408cb1d93fea15e143948daafba276b53ad56f437d5a15354fb8c
MD5 228b8859abdf204e7c4e063b970ab8ec
BLAKE2b-256 eb956ae139a534170810b84d7b980cb7380ec857c4c59555cb370b7643de228f

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19c3cfd5f80b548106ccb2d91449c3b11a29ba7987e85c121ad16079e7846924
MD5 e4b6eb5f0d1ba3bbe51e8a77967df659
BLAKE2b-256 492467df322ba2a222bf5e0716a8255e5d8bc416ad729495d18bc72ccd6a421c

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73a3500de6191a1742615a2412909894d436728d26635e4fc3c23a4a93038a39
MD5 0f3d0f185804ffd7b965fd62dbc0a7e7
BLAKE2b-256 8410b993036d4bfdae5bfc0cada9ed84d863efea4e46f2c3f4f5eeae666c5913

See more details on using hashes here.

File details

Details for the file openvino-2025.4.1-20426-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2025.4.1-20426-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4fd1bf11820c6d331234748422a9e118961b77f1984c22f52591f0ed8580ec6f
MD5 2c2960b7c9db41c2e8f251becf03c531
BLAKE2b-256 45b4d534747b511a5fd481e4ec887e10d6b6c92b9c915b574d28343016381d13

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page