Skip to main content

Inference Engine Python* API

Project description

Intel® Distribution of OpenVINO™ Toolkit Runtime Package

Copyright © 2018-2021 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the software license agreements for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Introduction

OpenVINO™ toolkit is a comprehensive toolkit for quickly developing applications and solutions that solve a variety of tasks including emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, and many others. Based on latest generations of artificial neural networks, including Convolutional Neural Networks (CNNs), recurrent and attention-based networks, the toolkit extends computer vision and non-vision workloads across Intel® hardware, maximizing performance. It accelerates applications with high-performance, AI and deep learning inference deployed from edge to cloud.

The Intel® Distribution of OpenVINO™ toolkit*:

  • Enables CNN-based deep learning inference on the edge
  • Supports heterogeneous execution across Intel® CPU, Intel® Integrated Graphics, Intel® Neural Compute Stick 2, and Intel® Vision Accelerator Design with Intel® Movidius™ VPUs
  • Speeds time-to-market via an easy-to-use library of computer vision functions and pre-optimized kernels

The runtime package includes the following components installed by default:

Component Description
Inference Engine This is the engine that runs the deep learning model. It includes a set of libraries for an easy inference integration into your applications.

System Requirements

The complete list of supported hardware is available in the Release Notes.

The table below lists supported operating systems and Python* versions required to run the installation.

Supported Operating System Python* Version (64-bit)
Ubuntu* 18.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8
Ubuntu* 20.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8
Red Hat* Enterprise Linux* 8, 64-bit 3.6, 3.8
CentOS* 7, 64-bit 3.6, 3.7, 3.8
macOS* 10.15.x versions 3.6, 3.7, 3.8
Windows 10*, 64-bit 3.6, 3.7, 3.8

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install the Runtime Package

Step 1. Set Up Python Virtual Environment

To avoid dependency conflicts, use a virtual environment. Skip this step only if you do want to install all dependencies globally.

Create virtual environment:

python -m pip install --user virtualenv 
python -m venv openvino_env

NOTE: On Linux and macOS, you may need to type python3 instead of python. You may also need to install pip.

Step 2. Activate Virtual Environment

On Linux and macOS:

source openvino_env/bin/activate

On Windows:

openvino_env\Scripts\activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino.inference_engine import IECore"

If installation was successful, you will not see any error messages (no console output).

Troubleshooting

Error: Microsoft Visual C++ 14.0 is required. Get it with "Build Tools for Visual Studio"

On Windows* some dependencies may require compilation from source when installing. To resolve this issue, you need to install Build Tools for Visual Studio* 2019 and repeat package installation.

ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.7

Additional Resources

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2021.4.1-3926-cp39-cp39-win_amd64.whl (22.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2021.4.1-3926-cp39-cp39-macosx_10_15_x86_64.whl (26.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

openvino-2021.4.1-3926-cp38-cp38-win_amd64.whl (22.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2021.4.1-3926-cp38-cp38-macosx_10_15_x86_64.whl (26.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

openvino-2021.4.1-3926-cp37-cp37m-win_amd64.whl (22.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

openvino-2021.4.1-3926-cp37-cp37m-macosx_10_15_x86_64.whl (26.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

openvino-2021.4.1-3926-cp36-cp36m-win_amd64.whl (22.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

openvino-2021.4.1-3926-cp36-cp36m-macosx_10_15_x86_64.whl (26.4 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file openvino-2021.4.1-3926-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 84ae47ae248c0c3f4ba7fee053bd0bb0d4e165adff0bef97c44031a0c455408e
MD5 099e86fd4d943f8fd70f2c106d9d204d
BLAKE2b-256 000a48b4b36becf981a3c24d1a74f0a03938cdddc16ad01a6745ce44486dd769

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 28.9 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9d803d37ef40ae2a25b5788689be7eb6b18affb841ad7e4409b24eadaad20a3
MD5 f618b66e45b14c834aaa8a98b0fbd07a
BLAKE2b-256 d6646ab0bfdd5822b563c2fe56a9575e497373793bf05b94ddc1fc88b4539dcd

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 26.4 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 be4eaac2dce2c763d48174321e170feee51ca50dca1a87e3fe21dd0d4bee77dd
MD5 051c210a04224b3ba484f28a10493469
BLAKE2b-256 f2b0d50c4005b4d9d0532aa1942d2441f6c69167c95aae18b1f0aec905f2ddca

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 04f296816656f385f71e0a180b81b3bfbe5fe76062c36ae61bd2a6317d8f7296
MD5 09e9d3be31989e2e4f6e60f1268f01ab
BLAKE2b-256 6f0a1f72994a394c784368707a16726105d0642d95532f9c84e530102a2bf4af

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 28.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b80f57d588e822e6a699f66ee84e3fbc8baac3588113a1f838f8adc20fb5b7e7
MD5 003e0ca2ab8097fb8ee5d25aee625a37
BLAKE2b-256 5642280c21b2f31cd90e1cfe759adf1aa78b7878266c2b5b2cc5123baa2b7418

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 26.4 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fff9e7f8e5eb8738fa553fb2c140d007b7578a0c7646ea129d5510451e590f2a
MD5 793ca0d1b1f76982a055465d46722349
BLAKE2b-256 8219217d46b80bf530f8e4b1424a59ba3baba4c772fd3f8d26ab07091433be09

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2fd69b8756cb1cba9dac1ff7f300d0d1e6b4376076b9e79e9f965a85f94df235
MD5 b9d9c2305780be195a084d4d6d14abaa
BLAKE2b-256 7cd522ba482379298bc7610d65bb5b0fe8c3053f094daa8ccbccff06314d6eca

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 28.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4583fc6a36e0d1a1a16d3a3388d972757556852510e0e9b5a45bc22b5814f408
MD5 249507bac1f34ddf87d9c40267121cb0
BLAKE2b-256 2669b94c390aa95ff281a2ad2efd23440f66269b356611127005e06d46cd4912

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 26.4 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6d82fa3a5851b90af4a634f86ea641ede0c618963742c95ea8b92477d283c2e0
MD5 75cd26b466ea7ddbf5e23a94f0951704
BLAKE2b-256 a7c8a172d8b3f03af7f7bbd890ee0bf1c6e2b64ce871450303956ab0b33fab20

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 22.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 268930b35e6dce3c6496d793b5434bc88fa3e1b280734695a54c97b4bd819524
MD5 5f53045dd1580601fdecaf71e4775870
BLAKE2b-256 b06aed6392fe46c01a0e95cda3cd931981d49fe29656a24340297ed6687544e8

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 28.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52889095ba868441164701df0236ea5d62dedb1ad40ab5454abb1f8105886796
MD5 69358dcb10c8e36846325dda0340b41f
BLAKE2b-256 b6e107fb865699c60832f6bb0f06c24ffc7afab1c3fa46dcb9c5b2a286155c54

See more details on using hashes here.

File details

Details for the file openvino-2021.4.1-3926-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: openvino-2021.4.1-3926-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 26.4 MB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.9

File hashes

Hashes for openvino-2021.4.1-3926-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ede3694b9a3090d38d2a566ec01f27a3c169b655cfb8b3b327f437cd84435428
MD5 e3ce586cb2bec905a88d7800cf0dd845
BLAKE2b-256 aa371d63a3642519bf1b87ac6652a035825ffd49f3dddd0af6e2e71050d357eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page