Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™ Runtime

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Runtime Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the Release Notes.

Supported Operating System Python* Version (64-bit)
Ubuntu* 18.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8
Ubuntu* 20.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8, 3.9
Red Hat* Enterprise Linux* 8, 64-bit 3.6, 3.8
macOS* 10.15.x versions 3.6, 3.7, 3.8, 3.9
Windows 10*, 64-bit 3.6, 3.7, 3.8, 3.9

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

NOTE: The current version of the OpenVINO™ Runtime for macOS* supports inference on Intel® CPUs only.

Install the OpenVINO™ Runtime Package

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Linux and macOS:

source openvino_env/bin/activate

On Windows:

openvino_env\Scripts\activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino.runtime import Core"

If installation was successful, you will not see any error messages (no console output).

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

ERROR:root:Could not find the Inference Engine or nGraph Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.7

Additional Resources

Copyright © 2018-2022 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2022.2.0-7713-cp39-cp39-win_amd64.whl (23.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2022.2.0-7713-cp39-cp39-manylinux_2_27_x86_64.whl (26.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64

openvino-2022.2.0-7713-cp39-cp39-macosx_10_15_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

openvino-2022.2.0-7713-cp38-cp38-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2022.2.0-7713-cp38-cp38-manylinux_2_27_x86_64.whl (26.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64

openvino-2022.2.0-7713-cp38-cp38-macosx_10_15_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

openvino-2022.2.0-7713-cp37-cp37m-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

openvino-2022.2.0-7713-cp37-cp37m-manylinux_2_27_x86_64.whl (26.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ x86-64

openvino-2022.2.0-7713-cp37-cp37m-macosx_10_15_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

openvino-2022.2.0-7713-cp36-cp36m-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

openvino-2022.2.0-7713-cp36-cp36m-manylinux_2_27_x86_64.whl (26.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.27+ x86-64

openvino-2022.2.0-7713-cp36-cp36m-macosx_10_15_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file openvino-2022.2.0-7713-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3286e8755b1a1bbe898229025827001032e12ae7602de29984c8d04f025c2087
MD5 faf36b17ff21785f7aff7a1ff64d5bc3
BLAKE2b-256 992241bbfb394b78a785152f619e72ed0e28a261af2d75eed1d02bb76d9d1ee0

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp39-cp39-manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp39-cp39-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 b418a4312cf40a3010f31c09ff360d2a8aa8bc67c5c0b20859c80acafa630833
MD5 e49bd4cad7f6f481915aa61100b7c236
BLAKE2b-256 00611e64cfadcd4880036e99c31b7f1e876d478525c8c6c08dc2dba321fd2c6e

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 97528431c6d7f438b51b90057e4557b155750b31a40d241e16c916341255c7b3
MD5 811e385e082363406dfaa08449a6e16d
BLAKE2b-256 eebe41926860d5fd97dfc56b665252a621d9bccae0217211ed344874b3c9838d

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 97fa3f3419c8766b9419d493ab52eeb431eb678fe97a0bdd0fed4307c6a09292
MD5 6f595ffff08e6b83f44bfcd9f0dd9a8d
BLAKE2b-256 3cb1507686b1b931c3706a96f1f1967b47aabe8d5b2a7df74b40791d6c5fcdad

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp38-cp38-manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp38-cp38-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 ddae2f441e32297d5caa7b25091beb8c2358616fd7094572fdb3df27a96bf79e
MD5 2c61aa3182137831ac93194133f73b31
BLAKE2b-256 6b267b5d93b5f77f7547f0b735ece4449af700af5af220dfcdc3cf229984354d

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1f886546791fb8cad18b624c9a88e8b91904f9293e5b33eb4309e3f5331a983c
MD5 b35e122ef1badd54efb072f75422fc05
BLAKE2b-256 405e38e8d28331ce9abe0d37181750b7b3efa9ef5d37479fa679556fbc5d92b8

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 64b92bb4ab0622828aa6dc3dc57740bae2982a98d27b31bb99fb51fef28a8ef3
MD5 646c9cb1f334c4d9f640ec5a7cb41d36
BLAKE2b-256 e6cb1bd0b6d1715e69ca7a1430507b8ab6cc16ca79cec8760f65f5654442979e

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp37-cp37m-manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp37-cp37m-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 410f383dbb899dc521ea2fd1a6d02905a6e2ef336fb8b3e27f54b9e5ad667d30
MD5 29f992d31527d9501aa780d62c2fde0b
BLAKE2b-256 6bfaf4d0547ffebf5d2c8cd9a5a0a4c5515e75e4111423363667705572092c4d

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 36787ff0ec1157c595d75b50b591a5050678f08980fc1727b9e63593179fe0ad
MD5 164cbe5e623f07d4e9e53db35811797d
BLAKE2b-256 8ce2dd3eb9df29c1aa633ee59038a9c5236cd03911e298c1797393b991c6a036

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 772bd1d75b5cc7a7ee38c71981d9e71987d83612c744cb8bd7d0c9279d5944cd
MD5 2d5523d5ecfccc58e245014b5c864242
BLAKE2b-256 64f91d9001118d9c49d595c1be8a75595c948120e1fd11e1ea1b5f1650ded2e8

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp36-cp36m-manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp36-cp36m-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 2c6c0fae7ac450e9591b5daa329772639d5da8075f133a6983fc1aed4ae63bc7
MD5 864e7bdb11b37f04e50fde0914dd4535
BLAKE2b-256 454f43ff385bca33f1bcee5ae7d42fa4d2959ed2729ab9c828f9deaf89af9a1f

See more details on using hashes here.

File details

Details for the file openvino-2022.2.0-7713-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.2.0-7713-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c60cbbef6ca6a0129e72bc89955875cebc793c5b4507aae59e6f055ed900c235
MD5 5f671165c4099f34a5f12db3819c65c4
BLAKE2b-256 fc564f2337d6b45bb1e8129c4e0a99c663a0c4770fd6ed11dadef01659ebaa34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page