Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™ Runtime

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Runtime Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the Release Notes.

Supported Operating System Python* Version (64-bit)
Ubuntu* 18.04 long-term support (LTS) x86, 64-bit 3.7, 3.8, 3.9, 3.10
Ubuntu* 20.04 long-term support (LTS) x86, 64-bit 3.7, 3.8, 3.9, 3.10
Red Hat* Enterprise Linux* 8 x86, 64-bit 3.7, 3.8, 3.9, 3.10
CentOS 7 x86, 64-bit 3.7, 3.8, 3.9, 3.10
macOS* 10.15 and higher versions, x86, 64-bit 3.7, 3.8, 3.9, 3.10
macOS* 11 and higher versions, arm64 3.7, 3.8, 3.9, 3.10
Windows 10* and higher versions, x86, 64-bit 3.7, 3.8, 3.9, 3.10

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

NOTE: The current version of the OpenVINO™ Runtime for macOS* supports inference on Intel® CPUs only.

Install the OpenVINO™ Runtime Package

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Linux and macOS:

source openvino_env/bin/activate

On Windows:

openvino_env\Scripts\activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino.runtime import Core"

If installation was successful, you will not see any error messages (no console output).

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find the Inference Engine or nGraph Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.7

Additional Resources

Copyright © 2018-2022 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2022.3.0-9052-cp310-cp310-win_amd64.whl (25.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2022.3.0-9052-cp310-cp310-manylinux_2_17_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

openvino-2022.3.0-9052-cp310-cp310-macosx_11_0_arm64.whl (15.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2022.3.0-9052-cp310-cp310-macosx_10_12_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

openvino-2022.3.0-9052-cp39-cp39-win_amd64.whl (25.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2022.3.0-9052-cp39-cp39-manylinux_2_17_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

openvino-2022.3.0-9052-cp39-cp39-macosx_11_0_arm64.whl (15.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2022.3.0-9052-cp39-cp39-macosx_10_12_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

openvino-2022.3.0-9052-cp38-cp38-win_amd64.whl (25.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2022.3.0-9052-cp38-cp38-manylinux_2_17_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

openvino-2022.3.0-9052-cp38-cp38-macosx_11_0_arm64.whl (15.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2022.3.0-9052-cp38-cp38-macosx_10_12_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

openvino-2022.3.0-9052-cp37-cp37m-win_amd64.whl (25.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

openvino-2022.3.0-9052-cp37-cp37m-manylinux_2_17_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

openvino-2022.3.0-9052-cp37-cp37m-macosx_11_0_arm64.whl (15.4 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

openvino-2022.3.0-9052-cp37-cp37m-macosx_10_12_x86_64.whl (24.8 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

File details

Details for the file openvino-2022.3.0-9052-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f490c914684edc8816b35724860c25fb91cea8131035255c069901d2a24b01cc
MD5 d7753a9b6b5c9c4f0c755eb3ae4e21e2
BLAKE2b-256 733fbb8dc33e0404780b466c3c442d6e7fec799aa3e17aa6d02472a7ede35a78

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d3c477819aa26e01bca01ee095f18694dd91f135f7dc7c34441e7059b00d935e
MD5 7428c2247dedbb55b673585087f06d43
BLAKE2b-256 3d7eadc8e884f598e1386e8c7432c9373e4033a2d9078892af07c8cf4b77586b

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2469df7af3390cecf255c70dea10abf33b077e619e26b5d7f0e6d0e0ea007e5e
MD5 89b4c04ce12a1da70a49296b7527cde4
BLAKE2b-256 3e0da1eedeaedbdc3c28366800de8e5abc9ec61294e5c2781c2a4e3c3eb125dc

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e71ee05c3b36df446fa33f0eca8b57855e83266cafc1f2cdbb89d4c6730cfa5f
MD5 11896d9f5f56b98f77cc69c193eb6211
BLAKE2b-256 47992c47cb4d6a26e03a1c67816b17426f5f3a303627293ec7e6a62357aa00d0

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 04a6be65cfab0366e4ebc2471ac8ba1bf821e7a40d5769ab4b5df7d6a2650441
MD5 8035a48cfab43a7091344c6df1127ef4
BLAKE2b-256 2c3842644d765b27c4e8ea894638afd57991c866e315740e966893260841a3fd

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1798a55b682fa542d53d69f6ddf79cc7c6cabaee77044da425ffc59a2b532282
MD5 e388ac77c29b5e9d7394f9fe823fc675
BLAKE2b-256 261d37939d6ffccb1c4fc1952200e9bbbba4f100d885adcaf705f451df62c994

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d7398e2a37d7276bac67d9288469b8fd0c5b15b8322c67c2985ced47b14412f
MD5 94152af5ce8ce021bb950f7be554bf26
BLAKE2b-256 ee3707ab12a85949bfcd8580880c590db718eaf030ce8a17868331e3f03d45e0

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 89836df4aad6bc52865e31b4f328a7c9f71a468f7b94b7766ad2c8b4e110377d
MD5 6f74ee85eae1de25a32a327f9dc6d692
BLAKE2b-256 2ed70da01cbbcf3c62737961226f6cfd574071d45669dcdcbc66b536bc1bbb6c

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 516d1a35d4da913ad1a9cfb0e1ae41cb5d4f7d1404b355f935131799138008ec
MD5 32c223cb9b2f7e88ffbb79f068dad379
BLAKE2b-256 709fb63970d2b845cbe17a3b4e5201e30e63c6611884cc62650668698ea96ddf

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp38-cp38-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp38-cp38-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b75ff3d29f7e9b9b8c6ff7ba95effa8a15a786408b025a92aaf98a35e1c0878c
MD5 b2424416f1138770fd24eccd5249bf0f
BLAKE2b-256 749868785ba4eb5b70ddbf0e32be21758f01df4026cda03591ef6906f38874de

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c1706b84db93a9cc99dfa72aeb240465d66876e10ab09efe55cec2245466eb1
MD5 ab7642ce13f08296cc16357d52e16b86
BLAKE2b-256 9b0b0c77758e4c89891fc57c7c2c6d75507a04566a61029ae9124f408d18c165

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ee4d782db162fb6bdad51e7d8d5ff1fb8463826ef58bf1a2f61dad5c30dbe5b4
MD5 fc450b816ec2590be42eaa3b4cc87512
BLAKE2b-256 53a8092f642183d4a8e7f627869aa5640368d6a3cb9ecf21904d496710e29d98

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cceb91acf86fb70988f2d9694460e52ea2612558775cafd1080e6760919857e3
MD5 087390a830c1c803d396e6c993de2787
BLAKE2b-256 2748c02e9a9fb0b4fce4689c47d71a73a5bb3a882eea73bd6c1acfee7e25b344

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp37-cp37m-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp37-cp37m-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 9003b308b9f66635e210a4aeb2fcdfe1474e6c0ee0fcd4f365dc00f0c83d8aee
MD5 126e63b33935531bc0f41a8a35f004d0
BLAKE2b-256 d0ed86496d4cb9235415c94e4d3b7ab06166e111dc867f4d039738f3b83fe16b

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18604c8ac7bad695a1143ccd88e22bca801c82b1e2e631b67c9787139c604e29
MD5 27862a4a1ed24522ed1a1701e69c8143
BLAKE2b-256 29821cca991363152f6f04cdb66c25a4959baba04b8f40f357e331e6657241a5

See more details on using hashes here.

File details

Details for the file openvino-2022.3.0-9052-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2022.3.0-9052-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 190c5600c2bcf81bcefc6cfc7f6b74f872527f56d4d4f99442219213447e219d
MD5 0dafeafc4942fb3b08cfa30d18018e17
BLAKE2b-256 b31e0f3f3f661e704fc02877f92032404b0e13302dcca015f47f5952ef01ba1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page