This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Einsum is a very powerful function for contracting tensors of arbitrary dimension and index. However, it is only optimized to contract two terms at a time resulting in non-optimal scaling.

For example, consider the following index transformation: M_{pqrs} = C_{pi} C_{qj} I_{ijkl} C_{rk} C_{sl}

Consider two different algorithms:

import numpy as np
N = 10
C = np.random.rand(N, N)
I = np.random.rand(N, N, N, N)

def naive(I, C):
    # N^8 scaling
    return np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

def optimized(I, C):
    # N^5 scaling
    K = np.einsum('pi,ijkl->pjkl', C, I)
    K = np.einsum('qj,pjkl->pqkl', C, K)
    K = np.einsum('rk,pqkl->pqrl', C, K)
    K = np.einsum('sl,pqrl->pqrs', C, K)
    return K

The einsum function does not consider building intermediate arrays; therefore, helping einsum out by building these intermediate arrays can result in a considerable cost savings even for small N (N=10):

>> np.allclose(naive(I, C), optimized(I, C))
True

%timeit naive(I, C)
1 loops, best of 3: 1.18 s per loop

%timeit optimized(I, C)
1000 loops, best of 3: 612 µs per loop

The index transformation is a well known contraction that leads to straightforward intermediates. This contraction can be further complicated by considering that the shape of the C matrices need not be the same, in this case the ordering in which the indices are transformed matters greatly. Logic can be built that optimizes the ordering; however, this is a lot of time and effort for a single expression.

The opt_einsum package is a drop in replacement for the np.einsum function and can handle all of the logic for you:

from opt_einsum import contract

contract('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

The above will automatically find the optimal contraction order, in this case identical to that of the optimized function above, and compute the products for you. In this case, it even uses np.dot under the hood to exploit any vendor BLAS functionality that your NumPy build has!

We can then view more details about the optimized contraction order:

>>> from opt_einsum import contract_path

>>> path_info = oe.contract_path('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

>>> print(path_info[0])
[(0, 2), (0, 3), (0, 2), (0, 1)]

>>> print(path_info[1])
  Complete contraction:  pi,qj,ijkl,rk,sl->pqrs
         Naive scaling:  8
     Optimized scaling:  5
      Naive FLOP count:  8.000e+08
  Optimized FLOP count:  8.000e+05
   Theoretical speedup:  1000.000
  Largest intermediate:  1.000e+04 elements
--------------------------------------------------------------------------------
scaling   BLAS                  current                                remaining
--------------------------------------------------------------------------------
   5      GEMM            ijkl,pi->jklp                      qj,rk,sl,jklp->pqrs
   5      GEMM            jklp,qj->klpq                         rk,sl,klpq->pqrs
   5      GEMM            klpq,rk->lpqr                            sl,lpqr->pqrs
   5      GEMM            lpqr,sl->pqrs                               pqrs->pqrs
Release History

Release History

0.2.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
opt_einsum-0.2.0-py2.py3-none-any.whl (13.0 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Jul 30, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting