Skip to main content

Optimum Library is an extension of the Hugging Face Transformers library, providing a framework to integrate third-party libraries from Hardware Partners and interface with their specific functionality.

Project description

Optimum Intel

🤗 Optimum Intel is the interface between the 🤗 Transformers library and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.

Intel Neural Compressor is an open-source library enabling the usage of the most popular compression techniques such as quantization, pruning and knowledge distillation. It supports automatic accuracy-driven tuning strategies in order for users to easily generate quantized model. The users can easily apply static, dynamic and aware-training quantization approaches while giving an expected accuracy criteria. It also supports different weight pruning techniques enabling the creation of pruned model giving a predefined sparsity target.

OpenVINO is an open-source toolkit that enables high performance inference capabilities for Intel CPUs, GPUs, and special DL inference accelerators. It is supplied with a set of tools to optimize and quantize models. Optimum Intel provides a simple interface to optimize Transformer models, convert them to OpenVINO Intermediate Representation format and to run inference using OpenVINO.

Installation

🤗 Optimum Intel can be installed using pip as follows:

python -m pip install optimum[intel]

Optimum Intel is a fast-moving project, and you may want to install from source.

pip install git+https://github.com/huggingface/optimum-intel.git

To install the latest release of this package with the corresponding required dependencies, you can do respectively:

Accelerator Installation
Intel Neural Compressor python -m pip install optimum[neural-compressor]
OpenVINO python -m pip install optimum[openvino,nncf] transformers==4.23.*

Running the examples

There are a number of examples provided in the examples directory.

Please install the requirements for every example:

cd <example-folder>
pip install -r requirements.txt

How to use it?

Neural Compressor

Here is an example on how to apply dynamic quantization on a DistilBERT fine-tuned on the SQuAD1.0 dataset. Note that quantization is currently only supported for CPUs (only CPU backends are available), so we will not be utilizing GPUs / CUDA in this example.

from datasets import load_dataset
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from evaluate import evaluator
from optimum.intel.neural_compressor import IncOptimizer, IncQuantizationConfig, IncQuantizer

model_id = "distilbert-base-cased-distilled-squad"
max_eval_samples = 100
model = AutoModelForQuestionAnswering.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
eval_dataset = load_dataset("squad", split="validation").select(range(max_eval_samples))
eval = evaluator("question-answering")
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)

def eval_func(model):
    qa_pipeline.model = model
    metrics = eval.compute(model_or_pipeline=qa_pipeline, data=eval_dataset, metric="squad")
    return metrics["f1"]

# Load the quantization configuration detailing the quantization we wish to apply
config_path = "echarlaix/distilbert-base-uncased-finetuned-sst-2-english-int8-dynamic"
quantization_config = IncQuantizationConfig.from_pretrained(config_path)

# Instantiate our IncQuantizer using the desired configuration and the evaluation function used
# for the INC accuracy-driven tuning strategy
quantizer = IncQuantizer(quantization_config, eval_func=eval_func)
optimizer = IncOptimizer(model, quantizer=quantizer)

# Apply dynamic quantization
quantized_model = optimizer.fit()

# Save the resulting model and its corresponding configuration in the given directory
optimizer.save_pretrained("./quantized_model")

To load a quantized model hosted locally or on the 🤗 hub, you can do as follows :

from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSequenceClassification

loaded_model_from_hub = IncQuantizedModelForSequenceClassification.from_pretrained(
    "Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-dynamic"
)

You can load many more quantized models hosted on the hub under the Intel organization here.

Check out the examples directory for more sophisticated usage.

OpenVINO

Below are the examples of how to use OpenVINO and its NNCF framework for model optimization, quantization, and inference.

OpenVINO inference example:

-from transformers import AutoModelForSequenceClassification
+from optimum.intel.openvino import OVModelForSequenceClassification
from transformers import AutoTokenizer, pipeline

model_id = "distilbert-base-uncased-finetuned-sst-2-english"
-model = AutoModelForSequenceClassification.from_pretrained(model_id)
+model = OVModelForSequenceClassification.from_pretrained(model_id, from_transformers=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe_cls = pipeline("text-classification", model=model, tokenizer=tokenizer)
text = "He's a dreadful magician."
outputs = pipe_cls(text)

Post-training quantization example:

from functools import partial
from optimum.intel.openvino import OVQuantizer, OVModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model_id = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_id)    
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(examples, tokenizer):
    return tokenizer(
        examples["sentence"], padding=True, truncation=True, max_length=128
    )

quantizer = OVQuantizer.from_pretrained(model)
calibration_dataset = quantizer.get_calibration_dataset(
    "glue",
    dataset_config_name="sst2",
    preprocess_function=partial(preprocess_fn, tokenizer=tokenizer),
    num_samples=100,
    dataset_split="train",
    preprocess_batch=True,
)
# The directory where the quantized model will be saved
save_dir = "nncf_results"
# Apply static quantization and save the resulting model in the OpenVINO IR format
quantizer.quantize(calibration_dataset=calibration_dataset, save_directory=save_dir)
# Load the quantized model
optimized_model = OVModelForSequenceClassification.from_pretrained(save_dir)

Quantization-aware training example:

import numpy as np
from datasets import load_dataset, load_metric
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, default_data_collator
-from transformers import Trainer
+from optimum.intel.openvino import OVConfig, OVModelForSequenceClassification, OVTrainer

model_id = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_id)    
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = load_dataset("glue", "sst2")
dataset = dataset.map(
    lambda examples: tokenizer(examples["sentence"], padding=True, truncation=True, max_length=128), batched=True
)
metric = load_metric("accuracy")
compute_metrics = lambda p: metric.compute(
    predictions=np.argmax(p.predictions, axis=1), references=p.label_ids
)

# The directory where the quantized model will be saved
save_dir = "nncf_results"

# Load the default quantization configuration detailing the quantization we wish to apply
+ov_config = OVConfig()

-trainer = Trainer(
+trainer = OVTrainer(
    model=model,
    args=TrainingArguments(save_dir, num_train_epochs=1.0, do_train=True, do_eval=True),
    train_dataset=dataset["train"].select(range(300)),
    eval_dataset=dataset["validation"],
    compute_metrics=compute_metrics,
    tokenizer=tokenizer,
    data_collator=default_data_collator,
+   ov_config=ov_config,
+   feature="sequence-classification",
)
train_result = trainer.train()
metrics = trainer.evaluate()
trainer.save_model()

+optimized_model = OVModelForSequenceClassification.from_pretrained(save_dir)

You can find more OpenVINO examples in the corresponding Optimum Intel documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optimum-intel-1.5.1.tar.gz (52.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page