Skip to main content

Optimized PyTree Utilities.

Reason this release was yanked:

old version

Project description

OpTree

Python 3.7+ PyPI GitHub Workflow Status GitHub Workflow Status Codecov Documentation Status Downloads GitHub Repo Stars

Optimized PyTree Utilities.


Table of Contents


Installation

Install from PyPI (PyPI / Status):

pip3 install --upgrade optree

Install from conda-forge (conda-forge):

conda install -c conda-forge optree

Install the latest version from GitHub:

pip3 install git+https://github.com/metaopt/optree.git#egg=optree

Or, clone this repo and install manually:

git clone --depth=1 https://github.com/metaopt/optree.git
cd optree
pip3 install .

Compiling from the source requires Python 3.7+, a compiler (gcc / clang / icc / cl.exe) supports C++20 and a cmake installation.


PyTrees

A PyTree is a recursive structure that can be an arbitrarily nested Python container (e.g., tuple, list, dict, OrderedDict, NamedTuple, etc.) or an opaque Python object. The key concepts of tree operations are tree flattening and its inverse (tree unflattening). Additional tree operations can be performed based on these two basic functions (e.g., tree_map = tree_unflatten ∘ map ∘ tree_flatten).

Tree flattening is traversing the entire tree in a left-to-right depth-first manner and returning the leaves of the tree in a deterministic order.

>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': 5, 'd': 6}
>>> optree.tree_flatten(tree)
([1, 2, 3, 4, 5, 6], PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}))
>>> optree.tree_flatten(1)
([1], PyTreeSpec(*))
>>> optree.tree_flatten(None)
([], PyTreeSpec(None))

This usually implies that the equal pytrees return equal lists of leaves and the same tree structure. See also section Key Ordering for Dictionaries.

>>> {'a': [1, 2], 'b': [3]} == {'b': [3], 'a': [1, 2]}
True
>>> optree.tree_leaves({'a': [1, 2], 'b': [3]}) == optree.tree_leaves({'b': [3], 'a': [1, 2]})
True
>>> optree.tree_structure({'a': [1, 2], 'b': [3]}) == optree.tree_structure({'b': [3], 'a': [1, 2]})
True

Tree Nodes and Leaves

A tree is a collection of non-leaf nodes and leaf nodes, where the leaf nodes have no children to flatten. optree.tree_flatten(...) will flatten the tree and return a list of leaf nodes while the non-leaf nodes will store in the tree specification.

Built-in PyTree Node Types

OpTree out-of-box supports the following Python container types in the registry:

which are considered non-leaf nodes in the tree. Python objects that the type is not registered will be treated as leaf nodes. The registration lookup uses the is operator to determine whether the type is matched. So subclasses will need to explicitly register in the registry, otherwise, an object of that type will be considered as a leaf. The NoneType is a special case discussed in section None is non-leaf Node vs. None is Leaf.

Registering a Container-like Custom Type as Non-leaf Nodes

A container-like Python type can be registered in the type registry with a pair of functions that specify:

  • flatten_func(container) -> (children, metadata, entries): convert an instance of the container type to a (children, metadata, entries) triple, where children is an iterable of subtrees and entries is an iterable of path entries of the container (e.g., indices or keys).
  • unflatten_func(metadata, children) -> container: convert such a pair back to an instance of the container type.

The metadata is some necessary data apart from the children to reconstruct the container, e.g., the keys of the dictionary (the children are values).

The entries can be omitted (only returns a pair) or is optional to implement (returns None). If so, use range(len(children)) (i.e., flat indices) as path entries of the current node. The function signature can be flatten_func(container) -> (children, metadata) or flatten_func(container) -> (children, metadata, None).

The following examples show how to register custom types and utilize them for tree_flatten and tree_map. Please refer to section Notes about the PyTree Type Registry for more information.

# Registry a Python type with lambda functions
optree.register_pytree_node(
    set,
    # (set) -> (children, metadata, None)
    lambda s: (sorted(s), None, None),
    # (metadata, children) -> (set)
    lambda _, children: set(children),
    namespace='set',
)

# Register a Python type into a namespace
import torch

optree.register_pytree_node(
    torch.Tensor,
    # (tensor) -> (children, metadata)
    flatten_func=lambda tensor: (
        (tensor.cpu().numpy(),),
        dict(dtype=tensor.dtype, device=tensor.device, requires_grad=tensor.requires_grad),
    ),
    # (metadata, children) -> tensor
    unflatten_func=lambda metadata, children: torch.tensor(children[0], **metadata),
    namespace='torch2numpy',
)
>>> tree = {'weight': torch.ones(size=(1, 2)).cuda(), 'bias': torch.zeros(size=(2,))}
>>> tree
{'weight': tensor([[1., 1.]], device='cuda:0'), 'bias': tensor([0., 0.])}

# Flatten without specifying the namespace
>>> tree_flatten(tree)  # `torch.Tensor`s are leaf nodes
([tensor([0., 0.]), tensor([[1., 1.]], device='cuda:0')], PyTreeSpec({'bias': *, 'weight': *}))

# Flatten with the namespace
>>> leaves, treespec = optree.tree_flatten(tree, namespace='torch2numpy')
>>> leaves, treespec
(
    [array([0., 0.], dtype=float32), array([[1., 1.]], dtype=float32)],
    PyTreeSpec(
        {
            'bias': CustomTreeNode(Tensor[{'dtype': torch.float32, 'device': device(type='cpu'), 'requires_grad': False}], [*]),
            'weight': CustomTreeNode(Tensor[{'dtype': torch.float32, 'device': device(type='cuda', index=0), 'requires_grad': False}], [*])
        },
        namespace='torch2numpy'
    )
)

# `entries` are not defined and use `range(len(children))`
>>> optree.tree_paths(tree, namespace='torch2numpy')
[('bias', 0), ('weight', 0)]

# Unflatten back to a copy of the original object
>>> optree.tree_unflatten(treespec, leaves)
{'bias': tensor([0., 0.]), 'weight': tensor([[1., 1.]], device='cuda:0')}

Users can also extend the pytree registry by decorating the custom class and defining an instance method tree_flatten and a class method tree_unflatten.

from collections import UserDict

@optree.register_pytree_node_class(namespace='mydict')
class MyDict(UserDict):
    def tree_flatten(self):  # -> (children, metadata, entries)
        reversed_keys = sorted(self.keys(), reverse=True)
        return (
            [self[key] for key in reversed_keys],  # children
            reversed_keys,  # metadata
            reversed_keys,  # entries
        )

    @classmethod
    def tree_unflatten(cls, metadata, children):
        return cls(zip(metadata, children))
>>> tree = MyDict(b=4, a=(2, 3), c=MyDict({'d': 5, 'f': 6}))

# Flatten without specifying the namespace
>>> optree.tree_flatten_with_path(tree)  # `MyDict`s are leaf nodes
(
    [()],
    [MyDict(b=4, a=(2, 3), c=MyDict({'d': 5, 'f': 6}))],
    PyTreeSpec(*)
)

# Flatten with the namespace
>>> optree.tree_flatten_with_path(tree, namespace='mydict')
(
    [('c', 'f'), ('c', 'd'), ('b',), ('a', 0), ('a', 1)],
    [6, 5, 4, 2, 3],
    PyTreeSpec(
        CustomTreeNode(MyDict[['c', 'b', 'a']], [CustomTreeNode(MyDict[['f', 'd']], [*, *]), *, (*, *)]),
        namespace='mydict'
    )
)

Notes about the PyTree Type Registry

There are several key attributes of the pytree type registry:

  1. The type registry is per-interpreter-dependent. This means registering a custom type in the registry affects all modules that use OpTree.

    - !!! WARNING !!!
      For safety reasons, a `namespace` must be specified while registering a custom type. It is
      used to isolate the behavior of flattening and unflattening a pytree node type. This is to
      prevent accidental collisions between different libraries that may register the same type.
    
  2. The elements in the type registry are immutable. Users can neither register the same type twice in the same namespace (i.e., update the type registry), nor remove a type from the type registry. To update the behavior of an already registered type, simply register it again with another namespace.

  3. Users cannot modify the behavior of already registered built-in types listed in Built-in PyTree Node Types, such as key order sorting for dict and collections.defaultdict.

  4. Inherited subclasses are not implicitly registered. The registration lookup uses type(obj) is registered_type rather than isinstance(obj, registered_type). Users need to register the subclasses explicitly. To register all subclasses, it is easy to implement with metaclass or __init_subclass__, for example:

    from collections import UserDict
    
    @optree.register_pytree_node_class(namespace='mydict')
    class MyDict(UserDict):
        def __init_subclass__(cls):  # define this in the base class
            super().__init_subclass__()
            # Register a subclass to namespace 'mydict'
            optree.register_pytree_node_class(cls, namespace='mydict')
    
        def tree_flatten(self):  # -> (children, metadata, entries)
            reversed_keys = sorted(self.keys(), reverse=True)
            return (
                [self[key] for key in reversed_keys],  # children
                reversed_keys,  # metadata
                reversed_keys,  # entries
            )
    
        @classmethod
        def tree_unflatten(cls, metadata, children):
            return cls(zip(metadata, children))
    
    # Subclasses will be automatically registered in namespace 'mydict'
    class MyAnotherDict(MyDict):
        pass
    
    >>> tree = MyDict(b=4, a=(2, 3), c=MyAnotherDict({'d': 5, 'f': 6}))
    >>> optree.tree_flatten_with_path(tree, namespace='mydict')
    (
        [('c', 'f'), ('c', 'd'), ('b',), ('a', 0), ('a', 1)],
        [6, 5, 4, 2, 3],
        PyTreeSpec(
            CustomTreeNode(MyDict[['c', 'b', 'a']], [CustomTreeNode(MyAnotherDict[['f', 'd']], [*, *]), *, (*, *)]),
            namespace='mydict'
        )
    )
    
  5. Be careful about the potential infinite recursion of the custom flatten function. The returned children from the custom flatten function are considered subtrees. They will be further flattened recursively. The children can have the same type as the current node. Users must design their termination condition carefully.

    import numpy as np
    import torch
    
    optree.register_pytree_node(
        np.ndarray,
        # Children are nest lists of Python objects
        lambda array: (np.atleast_1d(array).tolist(), array.ndim == 0),
        lambda scalar, rows: np.asarray(rows) if not scalar else np.asarray(rows[0]),
        namespace='numpy1',
    )
    
    optree.register_pytree_node(
        np.ndarray,
        # Children are Python objects
        lambda array: (
            list(array.ravel()),  # list(1DArray[T]) -> List[T]
            dict(shape=array.shape, dtype=array.dtype)
        ),
        lambda metadata, children: np.asarray(children, dtype=metadata['dtype']).reshape(metadata['shape']),
        namespace='numpy2',
    )
    
    optree.register_pytree_node(
        np.ndarray,
        # Returns a list of `np.ndarray`s without termination condition
        lambda array: ([array.ravel()], array.dtype),
        lambda shape, children: children[0].reshape(shape),
        namespace='numpy3',
    )
    
    optree.register_pytree_node(
        torch.Tensor,
        # Children are nest lists of Python objects
        lambda tensor: (torch.atleast_1d(tensor).tolist(), tensor.ndim == 0),
        lambda scalar, rows: torch.tensor(rows) if not scalar else torch.tensor(rows[0])),
        namespace='torch1',
    )
    
    optree.register_pytree_node(
        torch.Tensor,
        # Returns a list of `torch.Tensor`s without termination condition
        lambda tensor: (
            list(tensor.view(-1)),  # list(1DTensor[T]) -> List[0DTensor[T]] (STILL TENSORS!)
            tensor.shape
        ),
        lambda shape, children: torch.stack(children).reshape(shape),
        namespace='torch2',
    )
    
    >>> optree.tree_flatten(np.arange(9).reshape(3, 3), namespace='numpy1')
    (
        [0, 1, 2, 3, 4, 5, 6, 7, 8],
        PyTreeSpec(
            CustomTreeNode(ndarray[False], [[*, *, *], [*, *, *], [*, *, *]]),
            namespace='numpy1'
        )
    )
    # Implicitly casts `float`s to `np.float64`
    >>> optree.tree_map(lambda x: x + 1.5, np.arange(9).reshape(3, 3), namespace='numpy1')
    array([[1.5, 2.5, 3.5],
           [4.5, 5.5, 6.5],
           [7.5, 8.5, 9.5]])
    
    >>> optree.tree_flatten(np.arange(9).reshape(3, 3), namespace='numpy2')
    (
        [0, 1, 2, 3, 4, 5, 6, 7, 8],
        PyTreeSpec(
            CustomTreeNode(ndarray[{'shape': (3, 3), 'dtype': dtype('int64')}], [*, *, *, *, *, *, *, *, *]),
            namespace='numpy2'
        )
    )
    # Explicitly casts `float`s to `np.int64`
    >>> optree.tree_map(lambda x: x + 1.5, np.arange(9).reshape(3, 3), namespace='numpy2')
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    # Children are also `np.ndarray`s, recurse without termination condition.
    >>> optree.tree_flatten(np.arange(9).reshape(3, 3), namespace='numpy3')
    Traceback (most recent call last):
        ...
    RecursionError: Maximum recursion depth exceeded during flattening the tree.
    
    >>> optree.tree_flatten(torch.arange(9).reshape(3, 3), namespace='torch1')
    (
        [0, 1, 2, 3, 4, 5, 6, 7, 8],
        PyTreeSpec(
            CustomTreeNode(Tensor[False], [[*, *, *], [*, *, *], [*, *, *]]),
            namespace='torch1'
        )
    )
    # Implicitly casts `float`s to `torch.float32`
    >>> optree.tree_map(lambda x: x + 1.5, torch.arange(9).reshape(3, 3), namespace='torch1')
    tensor([[1.5000, 2.5000, 3.5000],
            [4.5000, 5.5000, 6.5000],
            [7.5000, 8.5000, 9.5000]])
    
    # Children are also `torch.Tensor`s, recurse without termination condition.
    >>> optree.tree_flatten(torch.arange(9).reshape(3, 3), namespace='torch2')
    Traceback (most recent call last):
        ...
    RecursionError: Maximum recursion depth exceeded during flattening the tree.
    

None is Non-leaf Node vs. None is Leaf

The None object is a special object in the Python language. It serves some of the same purposes as null (a pointer does not point to anything) in other programming languages, which denotes a variable is empty or marks default parameters. However, the None object is a singleton object rather than a pointer. It may also serve as a sentinel value. In addition, if a function has returned without any return value or the return statement is omitted, the function will also implicitly return the None object.

By default, the None object is considered a non-leaf node in the tree with arity 0, i.e., a non-leaf node that has no children. This is like the behavior of an empty tuple. While flattening a tree, it will remain in the tree structure definitions rather than in the leaves list.

>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
>>> optree.tree_flatten(tree)
([1, 2, 3, 4, 5], PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': None, 'd': *}))
>>> optree.tree_flatten(tree, none_is_leaf=True)
([1, 2, 3, 4, None, 5], PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf))
>>> optree.tree_flatten(1)
([1], PyTreeSpec(*))
>>> optree.tree_flatten(None)
([], PyTreeSpec(None))
>>> optree.tree_flatten(None, none_is_leaf=True)
([None], PyTreeSpec(*, NoneIsLeaf))

OpTree provides a keyword argument none_is_leaf to determine whether to consider the None object as a leaf, like other opaque objects. If none_is_leaf=True, the None object will place in the leaves list. Otherwise, the None object will remain in the tree specification (structure).

>>> import torch

>>> linear = torch.nn.Linear(in_features=3, out_features=2, bias=False)
>>> linear._parameters  # a container has None
OrderedDict([
    ('weight', Parameter containing:
               tensor([[-0.6677,  0.5209,  0.3295],
                       [-0.4876, -0.3142,  0.1785]], requires_grad=True)),
    ('bias', None)
])

>>> optree.tree_map(torch.zeros_like, linear._parameters)
OrderedDict([
    ('weight', tensor([[0., 0., 0.],
                       [0., 0., 0.]])),
    ('bias', None)
])

>>> optree.tree_map(torch.zeros_like, linear._parameters, none_is_leaf=True)
Traceback (most recent call last):
    ...
TypeError: zeros_like(): argument 'input' (position 1) must be Tensor, not NoneType

>>> optree.tree_map(lambda t: torch.zeros_like(t) if t is not None else 0, linear._parameters, none_is_leaf=True)
OrderedDict([
    ('weight', tensor([[0., 0., 0.],
                       [0., 0., 0.]])),
    ('bias', 0)
])

Key Ordering for Dictionaries

The built-in Python dictionary (i.e., builtins.dict) is an unordered mapping that holds the keys and values. The leaves of a dictionary are the values. Although since Python 3.6, the built-in dictionary is insertion ordered (PEP 468). The dictionary equality operator (==) does not check for key ordering. To ensure that "equal dict" implies "equal ordering of leaves", the order of values of the dictionary is sorted by the keys. This behavior is also applied to collections.defaultdict.

>>> optree.tree_flatten({'a': [1, 2], 'b': [3]})
([1, 2, 3], PyTreeSpec({'a': [*, *], 'b': [*]}))
>>> optree.tree_flatten({'b': [3], 'a': [1, 2]})
([1, 2, 3], PyTreeSpec({'a': [*, *], 'b': [*]}))

Note that there are no restrictions on the dict to require the keys are comparable (sortable). There can be multiple types of keys in the dictionary. The keys are sorted in ascending order by key=lambda k: k first if capable otherwise fallback to key=lambda k: (k.__class__.__qualname__, k). This handles most cases.

>>> sorted({1: 2, 1.5: 1}.keys())
[1, 1.5]
>>> sorted({'a': 3, 1: 2, 1.5: 1}.keys())
Traceback (most recent call last):
    ...
TypeError: '<' not supported between instances of 'int' and 'str'
>>> sorted({'a': 3, 1: 2, 1.5: 1}.keys(), key=lambda k: (k.__class__.__qualname__, k))
[1.5, 1, 'a']

If users want to keep the values in the insertion order, they should use collections.OrderedDict, which will take the order of keys under consideration:

>>> OrderedDict([('a', [1, 2]), ('b', [3])]) == OrderedDict([('b', [3]), ('a', [1, 2])])
False
>>> optree.tree_flatten(OrderedDict([('a', [1, 2]), ('b', [3])]))
([1, 2, 3], PyTreeSpec(OrderedDict([('a', [*, *]), ('b', [*])])))
>>> optree.tree_flatten(OrderedDict([('b', [3]), ('a', [1, 2])]))
([3, 1, 2], PyTreeSpec(OrderedDict([('b', [*]), ('a', [*, *])])))

Benchmark

We benchmark the performance of:

  • tree flatten
  • tree unflatten
  • tree copy (i.e., unflatten(flatten(...)))
  • tree map

compared with the following libraries:

All results are reported on a workstation with an AMD Ryzen 9 5950X CPU @ 4.45GHz in an isolated virtual environment with Python 3.10.9. Run with the following commands:

conda create --name optree-benchmark anaconda::python=3.10 --yes --no-default-packages
conda activate optree-benchmark
python3 -m pip install --editable '.[benchmark]' --extra-index-url https://download.pytorch.org/whl/cpu
python3 benchmark.py --number=10000 --repeat=5

The test inputs are nested containers (i.e., pytrees) extracted from torch.nn.Module objects. They are:

tiny_mlp = nn.Sequential(
    nn.Linear(1, 1, bias=True),
    nn.BatchNorm1d(1, affine=True, track_running_stats=True),
    nn.ReLU(),
    nn.Linear(1, 1, bias=False),
    nn.Sigmoid(),
)

and AlexNet, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, VisionTransformerH14 (ViT-H/14), and SwinTransformerB (Swin-B) from torchvsion. Please refer to benchmark.py for more details.

Tree Flatten

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 30.18 68.69 577.79 31.55 2.28 19.15 1.05
AlexNet 188 97.68 242.74 2102.67 118.22 2.49 21.53 1.21
ResNet18 698 346.24 787.04 7769.05 407.51 2.27 22.44 1.18
ResNet34 1242 663.70 1431.62 13989.08 712.72 2.16 21.08 1.07
ResNet50 1702 882.40 1906.07 19243.43 966.05 2.16 21.81 1.09
ResNet101 3317 1847.35 3953.69 39870.71 2031.28 2.14 21.58 1.10
ResNet152 4932 2678.84 5588.23 56023.10 2874.76 2.09 20.91 1.07
ViT-H/14 3420 1947.77 4467.48 40057.71 2195.20 2.29 20.57 1.13
Swin-B 2881 1763.83 3985.11 35818.71 1968.06 2.26 20.31 1.12
Average 2.24 21.04 1.11

Tree UnFlatten

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 54.91 134.31 234.37 913.43 2.45 4.27 16.64
AlexNet 188 210.76 565.19 929.61 3808.84 2.68 4.41 18.07
ResNet18 698 703.22 1727.14 3184.54 11643.08 2.46 4.53 16.56
ResNet34 1242 1312.01 3147.73 5762.68 20852.70 2.40 4.39 15.89
ResNet50 1702 1758.62 4177.30 7891.72 27874.16 2.38 4.49 15.85
ResNet101 3317 3753.81 8226.49 15362.37 53974.51 2.19 4.09 14.38
ResNet152 4932 5313.30 12205.85 24068.88 80256.68 2.30 4.53 15.10
ViT-H/14 3420 3994.53 10016.00 17411.04 66000.54 2.51 4.36 16.52
Swin-B 2881 3584.82 8940.27 15582.13 56003.34 2.49 4.35 15.62
Average 2.42 4.38 16.07

Tree Flatten with Path

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 35.55 522.00 N/A 915.30 14.68 N/A 25.75
AlexNet 188 113.89 2005.85 N/A 3503.25 17.61 N/A 30.76
ResNet18 698 432.31 7052.73 N/A 12239.45 16.31 N/A 28.31
ResNet34 1242 812.18 12657.12 N/A 21703.50 15.58 N/A 26.72
ResNet50 1702 1105.15 17173.43 N/A 29293.02 15.54 N/A 26.51
ResNet101 3317 2182.68 33455.81 N/A 56810.61 15.33 N/A 26.03
ResNet152 4932 3272.97 49550.72 N/A 84535.23 15.14 N/A 25.83
ViT-H/14 3420 2287.13 37485.28 N/A 63024.61 16.39 N/A 27.56
Swin-B 2881 2092.16 33942.08 N/A 52744.88 16.22 N/A 25.21
Average 15.87 N/A 26.96

Tree Copy

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 91.28 211.31 833.84 952.72 2.31 9.13 10.44
AlexNet 188 320.20 825.66 3118.08 3938.46 2.58 9.74 12.30
ResNet18 698 1113.83 2578.31 11325.44 12068.00 2.31 10.17 10.83
ResNet34 1242 2050.00 4836.56 20324.52 22749.73 2.36 9.91 11.10
ResNet50 1702 2897.93 6121.16 27563.39 28840.04 2.11 9.51 9.95
ResNet101 3317 5456.58 12306.26 53733.62 56140.12 2.26 9.85 10.29
ResNet152 4932 8044.33 18873.23 79896.03 83215.06 2.35 9.93 10.34
ViT-H/14 3420 6046.78 14451.37 58204.01 70966.61 2.39 9.63 11.74
Swin-B 2881 5173.48 13174.36 51701.17 60053.21 2.55 9.99 11.61
Average 2.36 9.76 10.96

Tree Map

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 99.25 229.26 848.37 968.28 2.31 8.55 9.76
AlexNet 188 332.74 853.33 3142.39 3992.22 2.56 9.44 12.00
ResNet18 698 1190.94 2760.28 11399.95 12294.02 2.32 9.57 10.32
ResNet34 1242 2286.53 4925.70 20423.57 23204.74 2.15 8.93 10.15
ResNet50 1702 2968.51 6622.94 27807.01 29259.40 2.23 9.37 9.86
ResNet101 3317 5851.06 13132.59 53999.13 57251.12 2.24 9.23 9.78
ResNet152 4932 8682.55 19346.59 80462.95 84364.39 2.23 9.27 9.72
ViT-H/14 3420 6695.68 16045.45 58313.07 68415.82 2.40 8.71 10.22
Swin-B 2881 5747.50 13757.05 52229.81 61017.78 2.39 9.09 10.62
Average 2.32 9.13 10.27

Tree Map (nargs)

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 133.87 344.99 N/A 3599.07 2.58 N/A 26.89
AlexNet 188 445.41 1310.77 N/A 14207.10 2.94 N/A 31.90
ResNet18 698 1599.16 4239.56 N/A 49255.49 2.65 N/A 30.80
ResNet34 1242 3066.14 8115.79 N/A 88568.31 2.65 N/A 28.89
ResNet50 1702 3951.48 10557.52 N/A 127232.92 2.67 N/A 32.20
ResNet101 3317 7801.80 20208.53 N/A 235961.43 2.59 N/A 30.24
ResNet152 4932 11489.21 29375.98 N/A 349007.54 2.56 N/A 30.38
ViT-H/14 3420 8319.66 23204.11 N/A 266190.21 2.79 N/A 32.00
Swin-B 2881 7259.47 20098.17 N/A 226166.17 2.77 N/A 31.15
Average 2.69 N/A 30.49

Tree Map with Path

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 104.70 703.83 N/A 1998.00 6.72 N/A 19.08
AlexNet 188 352.30 2668.73 N/A 7681.19 7.58 N/A 21.80
ResNet18 698 1289.51 9342.79 N/A 25497.31 7.25 N/A 19.77
ResNet34 1242 2366.46 16746.52 N/A 45254.59 7.08 N/A 19.12
ResNet50 1702 3399.11 23574.46 N/A 60494.27 6.94 N/A 17.80
ResNet101 3317 6329.82 43955.95 N/A 118725.60 6.94 N/A 18.76
ResNet152 4932 9307.87 64777.45 N/A 174764.97 6.96 N/A 18.78
ViT-H/14 3420 6705.10 48862.92 N/A 139617.21 7.29 N/A 20.82
Swin-B 2881 5780.20 41703.04 N/A 115003.61 7.21 N/A 19.90
Average 7.11 N/A 19.54

Tree Map with Path (nargs)

Module Nodes OpTree (μs) JAX XLA (μs) PyTorch (μs) DM-Tree (μs) Speedup (J / O) Speedup (P / O) Speedup (D / O)
TinyMLP 53 138.19 828.53 N/A 3599.32 6.00 N/A 26.05
AlexNet 188 461.91 3138.59 N/A 14069.17 6.79 N/A 30.46
ResNet18 698 1702.79 10890.25 N/A 49456.32 6.40 N/A 29.04
ResNet34 1242 3115.89 19356.46 N/A 88955.96 6.21 N/A 28.55
ResNet50 1702 4422.25 26205.69 N/A 121569.30 5.93 N/A 27.49
ResNet101 3317 8334.83 50909.37 N/A 241862.38 6.11 N/A 29.02
ResNet152 4932 12208.52 75327.94 N/A 351472.89 6.17 N/A 28.79
ViT-H/14 3420 9320.75 56869.65 N/A 266430.78 6.10 N/A 28.58
Swin-B 2881 7472.11 49260.03 N/A 233154.60 6.59 N/A 31.20
Average 6.26 N/A 28.80

Changelog

See CHANGELOG.md.


License

OpTree is released under the Apache License 2.0.

OpTree is heavily based on JAX's implementation of the PyTree utility, with deep refactoring and several improvements. The original licenses can be found at JAX's Apache License 2.0 and Tensorflow's Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optree-0.8.0.tar.gz (94.6 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

optree-0.8.0-cp311-cp311-win_arm64.whl (205.9 kB view details)

Uploaded CPython 3.11Windows ARM64

optree-0.8.0-cp311-cp311-win_amd64.whl (205.9 kB view details)

Uploaded CPython 3.11Windows x86-64

optree-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (313.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

optree-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (297.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

optree-0.8.0-cp311-cp311-macosx_11_0_arm64.whl (253.2 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

optree-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl (268.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

optree-0.8.0-cp311-cp311-macosx_10_9_universal2.whl (479.8 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

optree-0.8.0-cp310-cp310-win_arm64.whl (205.9 kB view details)

Uploaded CPython 3.10Windows ARM64

optree-0.8.0-cp310-cp310-win_amd64.whl (205.9 kB view details)

Uploaded CPython 3.10Windows x86-64

optree-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (313.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

optree-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (297.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

optree-0.8.0-cp310-cp310-macosx_11_0_arm64.whl (253.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

optree-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl (268.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

optree-0.8.0-cp310-cp310-macosx_10_9_universal2.whl (479.9 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

optree-0.8.0-cp39-cp39-win_arm64.whl (203.6 kB view details)

Uploaded CPython 3.9Windows ARM64

optree-0.8.0-cp39-cp39-win_amd64.whl (203.6 kB view details)

Uploaded CPython 3.9Windows x86-64

optree-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (314.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

optree-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (297.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

optree-0.8.0-cp39-cp39-macosx_11_0_arm64.whl (253.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

optree-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl (268.1 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

optree-0.8.0-cp39-cp39-macosx_10_9_universal2.whl (480.1 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

optree-0.8.0-cp38-cp38-win_amd64.whl (205.8 kB view details)

Uploaded CPython 3.8Windows x86-64

optree-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (313.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

optree-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (296.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

optree-0.8.0-cp38-cp38-macosx_11_0_arm64.whl (253.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

optree-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl (267.9 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

optree-0.8.0-cp38-cp38-macosx_10_9_universal2.whl (479.6 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

optree-0.8.0-cp37-cp37m-win_amd64.whl (205.4 kB view details)

Uploaded CPython 3.7mWindows x86-64

optree-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (321.7 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

optree-0.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.0 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

optree-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (264.6 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file optree-0.8.0.tar.gz.

File metadata

  • Download URL: optree-0.8.0.tar.gz
  • Upload date:
  • Size: 94.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0.tar.gz
Algorithm Hash digest
SHA256 292cb366f221c65ff4e3ed3230fa963da655dc19b51bbac8f018f944ad5d1289
MD5 ead6bdf1a15c7b102b495932da73fb9b
BLAKE2b-256 6e3cf2c151c335bbc01192da9a2c2a65a4b173cad2d1e0bfc1a55d0c08a879db

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: optree-0.8.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 205.9 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 e9c6e9a9649071594e14e285566cbb28cd3fedf7d207c3dcca6b7a8382007290
MD5 39738257419cfbd54806446100a0373e
BLAKE2b-256 eca9699e1065df770fa1a5c57721262ed3fb9320455b44b5489c8d0662e21818

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: optree-0.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 205.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 804ee9949568f66648a112e39d6970b543997f8097a3e6917344bca695f702b7
MD5 b62b6e622554d42a80dbd6b2269d5bde
BLAKE2b-256 8fea71a0f2c08dae51dc56447ee6fae86a1ef024a467c9c918f5d8d7ba88a169

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6873d37e161cba728b0196655d5932f77243bc07fa70dcf9dc2f61ed50c92bae
MD5 562a0c0db838579e56ac612500dde9ff
BLAKE2b-256 acead199baff28806affd449bbdb8b0481f4b624f6cd8dcdb076641c365eb9be

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9a96900ceedd0aa745b2ff0f794d1de1a8f7aa463b6b8072d407b3c3e39a32d
MD5 776601ff9523dc91f93c9e9939c283fd
BLAKE2b-256 ef35af2663d25c40dc10ce55bc2dfb2ec2a6a7fd82a65a239943c0ed3515d1cf

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d342fd8b0e01c9b79071460ace6b72c0d61e46385aafb94866c829372af1a87
MD5 ff788278a87c6db72b69e37deaf9cbe9
BLAKE2b-256 cd15f17040ad053993bb57b910efe37fa35953b678e6dc18f293e62a4bb2685a

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ebf91a9d42666a05bea3dd010b0437df7e8238972b429ec3ea12aeaba2e330b6
MD5 2b9e8ee207893f161ea5cbbc27931099
BLAKE2b-256 28b4ddf5a32fd66ad6d5301f94575f81994613fc916a3aa372c9573dca922caf

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a88a5d2ce08442034b0231cc465f9157b00243f21bc1b0e84eb256c9bd6842aa
MD5 de104f8d8a4fc7457eca22586e8b48aa
BLAKE2b-256 9c4c66c3935747758be1235062faaceecd1dfe796eefcff8963be1690eba1e25

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: optree-0.8.0-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 205.9 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 a0e0bfae22f92d9787fb76e9a0a832af51a72c5c04a5478535502acb6da2f651
MD5 e827eb67ececfea23a7c6835b457bfe0
BLAKE2b-256 e61d1a5387de4db0af45ac37fc5284e395e4b92e9d976217208e60cce7984bba

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: optree-0.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 205.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb79bbaf75ea38e2179df7b1c548531c1a78694c64eec4dc1a384f1b68610527
MD5 e8a7b5f05e8fe975daae03780e14fd87
BLAKE2b-256 36a287fb5f37fb86ebb762d6306f90fa34ad81c91fab9dc6b8d826a9da785487

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7633ab604122b90afa48775929b916809f698e1c85f610eca561503d78a0b05
MD5 eff96756d505439298541073bfafd00c
BLAKE2b-256 4039b803c29bd8e1e15ce627a3bc342bb8eb1dd520254a28d730b40958f385b9

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d798e2e7454fc9143b5fcdd1a003acfb8fa3f362d29f30554f501e96d10d522a
MD5 504572e5f9aa1ae2365f0c87fa603a50
BLAKE2b-256 9e03e7297cbdabc48b609855980c672199237945ee7dbcd8d20298d7128ce7d8

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1c3cacd45936256bf67701301b5362c96d46caa62980c457c3cd12fe56a987d
MD5 68775489b1012145cc76ea5e8118d2ab
BLAKE2b-256 c627e0413f768e1a165b788cf172474d34783fc2ba0e84d07760e5f134dce0ca

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af8c036d9abfe032bb985b3e73d4f04d8d88da56b0f07fc293450cf6b202a7a5
MD5 cf7b97729d7ed636c372bdb9fbb28541
BLAKE2b-256 108e958569f4730d8d76ffe2af19f2b89480838c04dd05cf3a45519acaaf5c6c

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 22a39bd0291442787aee8ea6480fd62beaae52ecf1bb31aeb26b2e02f36e121c
MD5 694b6e96a77ff8d8627034eef4179a97
BLAKE2b-256 211b3ea91909bceb48a61fb6fe611d97ab71e81bf7958d8184fc8d9fba0287bc

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: optree-0.8.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 203.6 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 99a419287d064baec1dacf04dc9558acd070ead2e6ffdb8eb5ae1d6d0ccc2023
MD5 08d6bc07d501046ab77dc1924c53b255
BLAKE2b-256 136b782edf0cb473cc310cd316bbde60d49d322ed4fcf3835bb54b19c18de4cd

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: optree-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 203.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b64a1da5406c327e909e5c02bc5e23060a5f369d7df77e47ade438be98e6d582
MD5 b153fa26fda9cf385117d5d62316ac6d
BLAKE2b-256 2a919d49a2772960d1db9fe5be7eccdc5d7bac1251cf5037878f1e8519dda8dc

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 673677384a5dee15ced4bea8e94a42053073ccb7770f5fd8d1eb49f48ec4f379
MD5 461373c6fbf83968f3ff5e70517d4d5f
BLAKE2b-256 cf19c281d31b98eefe390143d8b94aa3fc24fd6d6c896b3cf6d3c2f7f678e782

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34b592caa84ee90e918f02e48604041eb3748f3e4ec8f42a39d22744d1c91203
MD5 224d10746a3f33b4f2273bf23d6d7d99
BLAKE2b-256 ff5adbc7d8bc0c6b264f576142fdd04d383e521b1de357a93772a84bd1bf9f75

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e5d5123bad41be0c45e91262f62938740345e03c2edb20cb4833add4379901a
MD5 baa89b0a4b0782b1fbb58b728ec9ca63
BLAKE2b-256 c8840b1eb1740de8bc036357b015ff829c8783314acbbe9b16005f7e6118181d

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed9b04ab9d342f06db3b459fbe5f307cf78dc3ec6c2ff94f918a42477f16393e
MD5 69d1719981de8ce35b447a892ec0f789
BLAKE2b-256 7882d33a3d887428dc4d151c1c95b586ee16746774d9750cb4f6739fa16e750d

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e5d6061ed3e9eb0cc366c9c0f27e8d134f06bff803fd06655d161270bd99e955
MD5 b1e4adf80b109e9163a1013e37cb0a83
BLAKE2b-256 4d1a72ed9036c3109905f0294b9e94f6b4be5469c762f341db280f3cb40dc231

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: optree-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 205.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 01f6f9e78c48f4705d2d7f84f6a137c855a8c8f45171a4a8481b01b352980632
MD5 225d1ab4d27cf30e644f2c7b6f6ac4f9
BLAKE2b-256 874e3ea0d8ae7518cc52216ce1d6d41f607c46bfb8406248e180562821ecea8a

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e5897608ff8c0aec69c263535ab6bb03a36d20024457d4bd9f3b9b929d550a1
MD5 a8ca1ef628f44c04d7d741e6eaa7384d
BLAKE2b-256 d52464cfcb88cf79a253743b3f4b818cc8ebea042df19fe25316753b66a369cf

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 918dc02e08ce2ed10b30cb316b92f8e5d09fd22a1f060f19e6e89335c86627e3
MD5 26c3cf2205e2a82296fa72b980068598
BLAKE2b-256 343c49851c6e18a9577125396881b20e6af0170819fca0057c2af2d1fccb3efa

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6beb9c312ef0220a3cae23095f0ac2182d5e6ef3c9fc5edd49a8b74221e3812
MD5 8b0ea8f55ee5af2888a43eea93728834
BLAKE2b-256 1e8c739ae54f12191a765a3c32eac08e193695929126b6234dc8fbc779b1353b

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b4dca504fa19264e4496c1bcee07b458e4696fee80432420ad42233a3b80e05
MD5 2706d397eddfc4f50efc3502f5923ab5
BLAKE2b-256 0a218ea689883062053329f79daf8cfb5d40b145c1604f83deae1ae37cfd015b

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 026349e112445549aa61b0b0b4974548c886010954b3a63ba9a4bc5753ab1c45
MD5 072f8f530fcb863d331c493a031477a8
BLAKE2b-256 be119429df19c5808f7411d103dd27b9a76b1b97e1f3c3955811ad5deb8bec8c

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: optree-0.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 205.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for optree-0.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1b865ddbfb70afe9377ee61baabb845653726503ad5dbe82b6e1f7990e4e1037
MD5 2b8907e725bfbc9d912ef18685951432
BLAKE2b-256 e92a3e65ea0695b88968b794de2bce4770518839f9fa7823faf47db8529b72f1

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 beb9314969530b839e59dce32a7871bd3a2bb06006bcfb0de8682e17fd31379a
MD5 cda7110490364fe8b71f892e37f21ab4
BLAKE2b-256 62708ebee8108c63e68eaf5c74abc63125a65731b125f17cecd4b01a1a405e45

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7435b4c51e4ba9256533a22ded61ef35e40fc00ab191378d8a257a95d25ba8f9
MD5 f9a33b701d27cf77ddeb9f7a63255ec5
BLAKE2b-256 beee172c7a6d96d7fca45231b3a3cbc934d61332cef9a3a867dc7c24ed5e0be1

See more details on using hashes here.

File details

Details for the file optree-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for optree-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be45502fae0ccf59f396653c9acbf1095ad271953bb22b9382abad3a2a478796
MD5 58d2595e829ad5bee81d3e11d00fb4c5
BLAKE2b-256 798ad41ac84611bddd7400a775938d843c5b88f27a64fe7e3bf75ea27b7cb285

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page