Skip to main content

Allow SKLearn predictions to run on database systems in pure SQL.

Project description

orbital

Convert SKLearn pipelines into SQL queries for execution in a database without the need for a Python environment.

See examples directory for example pipelines and Documentation

Warning:

This is a work in progress.
You might encounter bugs or missing features.

Note:

Not all transformations and models can be represented as SQL queries,
so orbital might not be able to implement the specific pipeline you are using.

Getting Started

Install orbital:

$ pip install orbital

Prepare some data:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

COLUMNS = ["sepal.length", "sepal.width", "petal.length", "petal.width"]

iris = load_iris(as_frame=True)
iris_x = iris.data.set_axis(COLUMNS, axis=1)

# SQL and orbital don't like dots in column names, replace them with underscores
iris_x.columns = COLUMNS = [cname.replace(".", "_") for cname in COLUMNS]

X_train, X_test, y_train, y_test = train_test_split(
    iris_x, iris.target, test_size=0.2, random_state=42
)

Define a Scikit-Learn pipeline and train it:

from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

pipeline = Pipeline(
    [
        ("preprocess", ColumnTransformer([("scaler", StandardScaler(with_std=False), COLUMNS)],
                                        remainder="passthrough")),
        ("linear_regression", LinearRegression()),
    ]
)
pipeline.fit(X_train, y_train)

Convert the pipeline to orbital:

import orbital
import orbital.types

orbital_pipeline = orbital.parse_pipeline(pipeline, features={
    "sepal_length": orbital.types.DoubleColumnType(),
    "sepal_width": orbital.types.DoubleColumnType(),
    "petal_length": orbital.types.DoubleColumnType(),
    "petal_width": orbital.types.DoubleColumnType(),
})

You can print the pipeline to see the result:

>>> print(orbital_pipeline)

ParsedPipeline(
    features={
        sepal_length: DoubleColumnType()
        sepal_width: DoubleColumnType()
        petal_length: DoubleColumnType()
        petal_width: DoubleColumnType()
    },
    steps=[
        merged_columns=Concat(
            inputs: sepal_length, sepal_width, petal_length, petal_width,
            attributes: 
             axis=1
        )
        variable1=Sub(
            inputs: merged_columns, Su_Subcst=[5.809166666666666, 3.0616666666666665, 3.7266666666666666, 1.18333333...,
            attributes: 
        )
        multiplied=MatMul(
            inputs: variable1, coef=[-0.11633479416518255, -0.05977785171980231, 0.25491374699772246, 0.5475959...,
            attributes: 
        )
        resh=Add(
            inputs: multiplied, intercept=[0.9916666666666668],
            attributes: 
        )
        variable=Reshape(
            inputs: resh, shape_tensor=[-1, 1],
            attributes: 
        )
    ],
)

Now we can generate the SQL from the pipeline:

sql = orbital.export_sql("DATA_TABLE", orbital_pipeline, dialect="duckdb")

And check the resulting query:

>>> print(sql)

SELECT ("t0"."sepal_length" - 5.809166666666666) * -0.11633479416518255 + 0.9916666666666668 +  
       ("t0"."sepal_width" - 3.0616666666666665) * -0.05977785171980231 + 
       ("t0"."petal_length" - 3.7266666666666666) * 0.25491374699772246 + 
       ("t0"."petal_width" - 1.1833333333333333) * 0.5475959809777828 
AS "variable" FROM "DATA_TABLE" AS "t0"

Once the SQL is generate, you can use it to run the pipeline on a database. From here on the SQL can be exported and reused in other places:

>>> print("\nPrediction with SQL")
>>> duckdb.register("DATA_TABLE", X_test)
>>> print(duckdb.sql(sql).df()["variable"][:5].to_numpy())

Prediction with SQL
[ 1.23071715 -0.04010441  2.21970287  1.34966889  1.28429336]

We can verify that the prediction matches the one done by Scikit-Learn by running the scikitlearn pipeline on the same set of data:

>>> print("\nPrediction with SciKit-Learn")
>>> print(pipeline.predict(X_test)[:5])

Prediction with SciKit-Learn
[ 1.23071715 -0.04010441  2.21970287  1.34966889  1.28429336 ]

Supported Models

orbital currently supports the following models:

  • Linear Regression
  • Logistic Regression
  • Lasso Regression
  • Elastic Net
  • Decision Tree Regressor
  • Decision Tree Classifier
  • Random Forest Classifier
  • Gradient Boosting Regressor
  • Gradient Boosting Classifier

Contributing

Before contributing make sure you read .github/copilot-instructions.md, those are guidelines that are meaningful both to human developers and agents working on the codebase.

Testing

Setup testing environment:

$ uv sync --no-dev --extra test

Run Tests:

$ uv run pytest -v

Try Examples:

$ uv run examples/pipeline_lineareg.py

Development

Setup a development environment:

$ uv sync

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orbital-0.3.0.tar.gz (56.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

orbital-0.3.0-py3-none-any.whl (59.2 kB view details)

Uploaded Python 3

File details

Details for the file orbital-0.3.0.tar.gz.

File metadata

  • Download URL: orbital-0.3.0.tar.gz
  • Upload date:
  • Size: 56.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.3

File hashes

Hashes for orbital-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e2dac9c6eaefc27a66bf2f3699afd1fcba0ad1492638a3c439535cddde8bf6a7
MD5 e2df1389b6152b42c03da183329ce8e0
BLAKE2b-256 c12fa69f38b3510c2e1a94e924d9771270beacc23f42902f39c21e9e63aa729a

See more details on using hashes here.

File details

Details for the file orbital-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: orbital-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 59.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.3

File hashes

Hashes for orbital-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6d419b968ab74c0948db187756b77a22924b87c37b8c3aebb34fad95265e65e0
MD5 83bbf578e95ed8f56087346094ff1fa3
BLAKE2b-256 d57eefdb2d3587815e0bf775f5fc2859243480ae1269473b1c9663909afa7a71

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page