Skip to main content

Coding Makes Life Easier

Project description


======
Oujago
======

Coding makes life easier. This is a factory contains commonly used
algorithms.


Installation
============

Install ``oujago`` using pip:

.. code-block:: bash

$> pip install oujago

Install from source code:

.. code-block:: bash

$> python setup.py clean --all install


Download data from `BaiDuYun <https://pan.baidu.com/s/1i57RVLj>`_:

.. code-block::

https://pan.baidu.com/s/1i57RVLj



Documentation
=============

Available online documents: `latest <http://oujago.readthedocs.io/en/latest/>`_,
`stable <http://oujago.readthedocs.io/en/stable/>`_,
and `stable <http://oujago.readthedocs.io/en/develop/>`_.


NLP Part
========

Hanzi Converter
---------------

繁简转换器.

.. code-block:: shell

>>> from oujago.nlp import FJConvert
>>> FJConvert.to_tradition('繁简转换器')
'繁簡轉換器'
>>> FJConvert.to_simplify('繁簡轉換器')
'繁简转换器'
>>> FJConvert.same('繁简转换器', '繁簡轉換器')
>>> True
>>> FJConvert.same('繁简转换器', '繁簡轉換')
>>> False


Chinese Segment
---------------

Support ``jieba``, ``LTP``, ``thulac``, ``pynlpir`` etc. public segmentation methods.

.. code-block:: shell

>>> from oujago.nlp import seg
>>>
>>> sentence = "这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。"
>>> seg(sentence, mode='ltp')
['这', '是', '一个', '伸手', '不', '见', '五', '指', '的', '黑夜', '。', '我', '叫', '孙悟空',
',', '我', '爱', '北京', ',', '我', '爱', 'Python', '和', 'C', '+', '+', '。']
>>> seg(sentence, mode='jieba')
['这是', '一个', '伸手不见五指', '的', '黑夜', '。', '我', '叫', '孙悟空', ',', '我', '爱',
'北京', ',', '我', '爱', 'Python', '和', 'C++', '。']
>>> seg(sentence, mode='thulac')
['这', '是', '一个', '伸手不见五指', '的', '黑夜', '。', '我', '叫', '孙悟空', ',',
'我', '爱', '北京', ',', '我', '爱', 'Python', '和', 'C', '+', '+', '。']
>>> seg(sentence, mode='nlpir')
['这', '是', '一个', '伸手', '不见', '五指', '的', '黑夜', '。', '我', '叫', '孙悟空',
',', '我', '爱', '北京', ',', '我', '爱', 'Python', '和', 'C++', '。']
>>>
>>> seg("这是一个伸手不见五指的黑夜。")
['这是', '一个', '伸手不见五指', '的', '黑夜', '。']
>>> seg("这是一个伸手不见五指的黑夜。", mode='ltp')
['这', '是', '一个', '伸手', '不', '见', '五', '指', '的', '黑夜', '。']
>>> seg('我不喜欢日本和服', mode='jieba')
['我', '不', '喜欢', '日本', '和服']
>>> seg('我不喜欢日本和服', mode='ltp')
['我', '不', '喜欢', '日本', '和服']


Part-of-Speech
--------------

.. code-block:: shell

>>> from oujago.nlp.postag import pos
>>> pos('我不喜欢日本和服', mode='jieba')
['r', 'd', 'v', 'ns', 'nz']
>>> pos('我不喜欢日本和服', mode='ltp')
['r', 'd', 'v', 'ns', 'n']


NN Part
=======

SRU (PyTorch)
-------------

Require packages: ``cupy``, ``pynvrtc``, ``pytorch``.
Comes from `<Training RNNs as Fast as CNNs> <https://arxiv.org/abs/1709.02755>`_ .

The usage of SRU is similar to ``torch.nn.LSTM``.

.. code-block:: python

import torch
from torch.autograd import Variable
from oujago.nn.sru import SRU, SRUCell

# input has length 20, batch size 32 and dimension 128
x = Variable(torch.FloatTensor(20, 32, 128).cuda())

input_size, hidden_size = 128, 128

rnn = SRU(input_size, hidden_size,
num_layers = 2, # number of stacking RNN layers
dropout = 0.0, # dropout applied between RNN layers
rnn_dropout = 0.0, # variational dropout applied on linear transformation
use_tanh = 1, # use tanh?
use_relu = 0, # use ReLU?
bidirectional = False # bidirectional RNN ?
)
rnn.cuda()

output, hidden = rnn(x) # forward pass

# output is (length, batch size, hidden size * number of directions)
# hidden is (layers, batch size, hidden size * number of directions)


See Language Modeling example: `sru_language_modeling.py <apps/sru_language_modeling>`_


Utils Part
==========

Common Utils
------------


Check weather this ``object`` is an iterable.

.. code-block:: shell

>>> from oujago.utils.common import is_iterable
>>> is_iterable([1, 2])
True
>>> is_iterable((1, 2))
True
>>> is_iterable("123")
True
>>> is_iterable(123)
False


Time Utils
----------

Get current time.

.. code-block:: shell

>>> from oujago.utils.time import now
>>> now()
"2017-04-26-16-44-56"
>>>
>>> from oujago.utils.time import today
>>> today()
"2017-04-26"

Change the total time into the normal time format.

.. code-block:: shell

>>> from oujago.utils.time import time_format
>>> time_format(36)
"36 s"
>>> time_format(90)
"1 min 30 s "
>>> time_format(5420)
"1 h 30 min 20 s"
>>> time_format(20.5)
"20 s 500 ms"
>>> time_format(864023)
'10 d 23 s'





Change Log
==========


0.1.13
------

* PyTorch alexnet, at `2018.03.30`.
* PyTorch densenet, at `2018.03.30`.
* PyTorch inception, at `2018.03.30`.
* PyTorch resnet, at `2018.03.30`.
* PyTorch squeezenet, at `2018.03.30`.
* PyTorch vgg, at `2018.03.30`.
* keras resnet, at `2018.03.30`.


0.1.12
------

* PyTorch SRU Layer , at `2018.01.21`.
* Format README , at `2018.01.21`.

0.1.9
-----

* NLP moran NER , at `2017.07.06`.
* NLP thulac segment , at `2017.07.06`.
* NLP thulac postag , at `2017.07.06`.


0.1.8
-----

* NLP moran segment , at `2017.06.26`.
* NLP moran postag , at `2017.06.26`.


0.1.7
-----

* NLP jieba segment , at `2017.06.20`.
* NLP LTP segment , at `2017.06.20`.
* NLP jieba POSTag , at `2017.06.20`.
* NLP LTP POSTag , at `2017.06.20`.
* NLP LTP NER , at `2017.06.20`.
* NLP LTP Dependecy Parse , at `2017.06.20`.
* NLP LTP Semantic Role Labeling , at `2017.06.20`.


0.1.6
-----

* Hanzi Converter , at `2017.06.19`.
* Chinese Stopwords , at `2017.06.19`.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
oujago-0.1.14.tar.gz (56.0 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page