Wrapper for df and df[col].apply parallelized
Project description
pandas-parallel-apply
df.apply(fn)
, df[col].apply(fn)
and series.apply(fn)
wrappers with tqdm included
Installation
pip install pandas-parallel-apply
Examples
See examples/
for usage on some dummy dataframe and series.
Usage
1. Procedural
Apply on each row of a dataframe
df.apply(fn)
-> apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)
Apply on a column of a dataframe and return the Series
df[col].apply(fn, axis=1)
-> apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)
Apply on a series and return the modified Series
series.apply(fn)
-> `apply_on_seris_parallel(series: pd.Series, fn: Callable, n_cores: int, pbar: bool = True)
Switches for boolean parallel/non-parallel
apply_on_df/df_col/series_maybe_parallel(*, parallel: bool, n_cores: int, pbar: bool = True)
2. Object Oriented Programming
Apply on each row of a dataframe
df.apply(fn)
-> DataFrameParallel(df, n_cores: int, pbar: bool = True).apply(fn)
Apply on a column of a dataframe and return the Series
df[col].apply(fn, axis=1)
-> DataFrameParallel(df, n_cores: int, pbar: bool=True)[col].apply(fn, axis=1)
Apply on a series
series.apply(fn)
-> SeriesParallel(series, n_cores: int, pbar: bool=True).apply(fn)
That's all.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pandas-parallel-apply-1.1.0.tar.gz
.
File metadata
- Download URL: pandas-parallel-apply-1.1.0.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2ccf362ca14deb11c8aab704399c57c30e135e2fec52fda97c45b28212eb9d56
|
|
MD5 |
c48d531e4808f93bacf8278673cb452b
|
|
BLAKE2b-256 |
fa08b743018b8d2a7b888c363c832c4990170aadb3e0feaa15f16e478473633f
|