Skip to main content

Wrapper for df and df[col].apply parallelized

Project description

pandas-parallel-apply

df.apply(fn), df[col].apply(fn) and series.apply(fn) wrappers with tqdm included

Installation

pip install pandas-parallel-apply

Examples

See examples/ for usage on some dummy dataframe and series.

Usage

1. Procedural

Apply on each row of a dataframe

df.apply(fn) -> apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)

Apply on a column of a dataframe and return the Series

df[col].apply(fn, axis=1) -> apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)

Apply on a series and return the modified Series

series.apply(fn) -> `apply_on_seris_parallel(series: pd.Series, fn: Callable, n_cores: int, pbar: bool = True)

Switches for boolean parallel/non-parallel

apply_on_df/df_col/series_maybe_parallel(*, parallel: bool, n_cores: int, pbar: bool = True)

2. Object Oriented Programming

Apply on each row of a dataframe

df.apply(fn) -> DataFrameParallel(df, n_cores: int, pbar: bool = True).apply(fn)

Apply on a column of a dataframe and return the Series

df[col].apply(fn, axis=1) -> DataFrameParallel(df, n_cores: int, pbar: bool=True)[col].apply(fn, axis=1)

Apply on a series

series.apply(fn) -> SeriesParallel(series, n_cores: int, pbar: bool=True).apply(fn)

That's all.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-parallel-apply-1.1.0.tar.gz (3.8 kB view details)

Uploaded Source

File details

Details for the file pandas-parallel-apply-1.1.0.tar.gz.

File metadata

  • Download URL: pandas-parallel-apply-1.1.0.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for pandas-parallel-apply-1.1.0.tar.gz
Algorithm Hash digest
SHA256 2ccf362ca14deb11c8aab704399c57c30e135e2fec52fda97c45b28212eb9d56
MD5 c48d531e4808f93bacf8278673cb452b
BLAKE2b-256 fa08b743018b8d2a7b888c363c832c4990170aadb3e0feaa15f16e478473633f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page