A light-weight and flexible validation package for pandas data structures.
Project description
Pandera
A flexible and expressive pandas validation library.
pandas data structures hide a lot of information, and explicitly
validating them at runtime in production-critical or reproducible research
settings is a good idea. pandera enables users to:
- Check the types and properties of columns in a
DataFrameor values in aSeries. - Perform more complex statistical validation like hypothesis testing.
- Seamlessly integrate with existing data analysis/processing pipelines via function decorators.
pandera provides a flexible and expressive API for performing data validation
on tidy (long-form) and wide data to make data processing pipelines more
readable and robust.
Documentation
The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io
Install
Using pip:
pip install pandera
Using conda:
conda install -c cosmicbboy pandera
Example Usage
DataFrameSchema
import pandas as pd
import pandera as pa
from pandera import Column, DataFrameSchema, Check
# validate columns
schema = DataFrameSchema({
# the check function expects a series argument and should output a boolean
# or a boolean Series.
"column1": Column(pa.Int, Check(lambda s: s <= 10)),
"column2": Column(pa.Float, Check(lambda s: s < -1.2)),
# you can provide a list of validators
"column3": Column(pa.String, [
Check(lambda s: s.str.startswith("value_")),
Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
]),
})
# alternatively, you can pass strings representing the legal pandas datatypes:
# http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
schema = DataFrameSchema({
"column1": Column("int64", Check(lambda s: s <= 10)),
...
})
df = pd.DataFrame({
"column1": [1, 4, 0, 10, 9],
"column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
"column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})
validated_df = schema.validate(df)
print(validated_df)
# column1 column2 column3
# 0 1 -1.3 value_1
# 1 4 -1.4 value_2
# 2 0 -2.9 value_3
# 3 10 -10.1 value_2
# 4 9 -20.4 value_1
Development Installation
git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements.txt
pip install -e .
Tests
pip install pytest
pytest tests
Contributing to pandera 
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.
A detailed overview on how to contribute can be found in the contributing guide on GitHub.
Issues
Go here to submit feature requests or bugfixes.
Other Data Validation Libraries
Here are a few other alternatives for validating Python data structures.
Generic Python object data validation
pandas-specific data validation
Why pandera?
pandas-centric data types, column nullability, and uniqueness are first-class concepts.check_inputandcheck_outputdecorators enable seamless integration with existing code.Checks provide flexibility and performance by providing access topandasAPI by design.Hypothesisclass provides a tidy-first interface for statistical hypothesis testing.Checks andHypothesisobjects support both tidy and wide data validation.- Comprehensive documentation on key functionality.
Citation Information
@misc{niels_bantilan_2019_3385266,
author = {Niels Bantilan and
Nigel Markey and
Riccardo Albertazzi and
chr1st1ank},
title = {pandera-dev/pandera: 0.2.0 pre-release 1},
month = sep,
year = 2019,
doi = {10.5281/zenodo.3385266},
url = {https://doi.org/10.5281/zenodo.3385266}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pandera-0.2.2.tar.gz.
File metadata
- Download URL: pandera-0.2.2.tar.gz
- Upload date:
- Size: 19.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
75581ad33e5cda3754ebaeeb3f3ee731df4fd150db7d176c391537e409b86139
|
|
| MD5 |
d0147c49f90413d74fe92bb80405b971
|
|
| BLAKE2b-256 |
02828416259bf3213777e323e3e4ff90373bf9e1dcbe8473702ebcca0f9c6773
|
File details
Details for the file pandera-0.2.2-py3-none-any.whl.
File metadata
- Download URL: pandera-0.2.2-py3-none-any.whl
- Upload date:
- Size: 30.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c3aacdb04ddb7d979ec032c3e2b6b4eb040bf6ca649c58194f308abe03b8cc80
|
|
| MD5 |
8b202b0895672cd8c572155ed6cff328
|
|
| BLAKE2b-256 |
011f51e26c810f25109b72f07a2fd4de851f71991437ebc95472503b77938409
|