Skip to main content

A light-weight and flexible validation package for pandas data structures.

Project description

Pandera

A flexible and expressive pandas validation library.


Build Status PyPI version shields.io PyPI license pyOpenSci Project Status: Active – The project has reached a stable, usable state and is being actively developed. Documentation Status codecov PyPI pyversions DOI

pandas data structures hide a lot of information, and explicitly validating them at runtime in production-critical or reproducible research settings is a good idea. pandera enables users to:

  1. Check the types and properties of columns in a DataFrame or values in a Series.
  2. Perform more complex statistical validation like hypothesis testing.
  3. Seamlessly integrate with existing data analysis/processing pipelines via function decorators.

pandera provides a flexible and expressive API for performing data validation on tidy (long-form) and wide data to make data processing pipelines more readable and robust.

Documentation

The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io

Install

Using pip:

pip install pandera

Using conda:

conda install -c cosmicbboy pandera

Example Usage

DataFrameSchema

import pandas as pd
import pandera as pa

from pandera import Column, DataFrameSchema, Check


# validate columns
schema = DataFrameSchema({
    # the check function expects a series argument and should output a boolean
    # or a boolean Series.
    "column1": Column(pa.Int, Check(lambda s: s <= 10)),
    "column2": Column(pa.Float, Check(lambda s: s < -1.2)),
    # you can provide a list of validators
    "column3": Column(pa.String, [
        Check(lambda s: s.str.startswith("value_")),
        Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

# alternatively, you can pass strings representing the legal pandas datatypes:
# http://pandas.pydata.org/pandas-docs/stable/basics.html#dtypes
schema = DataFrameSchema({
    "column1": Column("int64", Check(lambda s: s <= 10)),
    ...
})

df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

validated_df = schema.validate(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1

Development Installation

git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements.txt
pip install -e .

Tests

pip install pytest
pytest tests

Contributing to pandera GitHub contributors

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide on GitHub.

Issues

Go here to submit feature requests or bugfixes.

Other Data Validation Libraries

Here are a few other alternatives for validating Python data structures.

Generic Python object data validation

pandas-specific data validation

Why pandera?

  • pandas-centric data types, column nullability, and uniqueness are first-class concepts.
  • check_input and check_output decorators enable seamless integration with existing code.
  • Checks provide flexibility and performance by providing access to pandas API by design.
  • Hypothesis class provides a tidy-first interface for statistical hypothesis testing.
  • Checks and Hypothesis objects support both tidy and wide data validation.
  • Comprehensive documentation on key functionality.

Citation Information

@misc{niels_bantilan_2019_3385266,
  author       = {Niels Bantilan and
                  Nigel Markey and
                  Riccardo Albertazzi and
                  chr1st1ank},
  title        = {pandera-dev/pandera: 0.2.0 pre-release 1},
  month        = sep,
  year         = 2019,
  doi          = {10.5281/zenodo.3385266},
  url          = {https://doi.org/10.5281/zenodo.3385266}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandera-0.2.5.tar.gz (21.5 kB view details)

Uploaded Source

Built Distribution

pandera-0.2.5-py3-none-any.whl (32.5 kB view details)

Uploaded Python 3

File details

Details for the file pandera-0.2.5.tar.gz.

File metadata

  • Download URL: pandera-0.2.5.tar.gz
  • Upload date:
  • Size: 21.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.37.0 CPython/3.6.7

File hashes

Hashes for pandera-0.2.5.tar.gz
Algorithm Hash digest
SHA256 af5b7db97d023cb849f231c97c5eb8ae116924be28c0406bd4f79ec0498d4ea7
MD5 86716e9c1e9222138984b2248c9f22c5
BLAKE2b-256 3336cc937881d1cfd858ddc8f7c25dffa83298dc1bc96410460796bd890f9837

See more details on using hashes here.

File details

Details for the file pandera-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: pandera-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 32.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.37.0 CPython/3.6.7

File hashes

Hashes for pandera-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 72600072b6e7233225231da0a592a732a540d9abe62f486e7e913d0b2c54ce84
MD5 e744f884306627e5f0e39c221348b925
BLAKE2b-256 422c21004930c7d0c3d3846e79cb9f8209453d566a6d452e8f85b8a8d9576062

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page