A light-weight and flexible validation package for pandas data structures.
Project description
A data validation library for scientists, engineers, and analysts seeking correctness.
pandas
data structures contain information that pandera
explicitly
validates at runtime. This is useful in production-critical or reproducible
research settings. With pandera
, you can:
- Check the types and
properties of columns in a
DataFrame
or values in aSeries
. - Perform more complex statistical validation like hypothesis testing.
- Seamlessly integrate with existing data analysis/processing pipelines via function decorators.
- Define schema models with the class-based API with pydantic-style syntax and validate dataframes using the typing syntax.
- Synthesize data from schema objects for property-based testing with pandas data structures.
pandera
provides a flexible and expressive API for performing data validation
on tidy (long-form) and wide data to make data processing pipelines more
readable and robust.
Documentation
The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io
Install
Using pip:
pip install pandera
Installing optional functionality:
pip install pandera[hypotheses] # hypothesis checks
pip install pandera[io] # yaml/script schema io utilities
pip install pandera[strategies] # data synthesis strategies
pip install pandera[all] # all packages
Using conda:
conda install -c conda-forge pandera-core # core library functionality
conda install -c conda-forge pandera # pandera with all extensions
Quick Start
import pandas as pd
import pandera as pa
# data to validate
df = pd.DataFrame({
"column1": [1, 4, 0, 10, 9],
"column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
"column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})
# define schema
schema = pa.DataFrameSchema({
"column1": pa.Column(int, checks=pa.Check.le(10)),
"column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
"column3": pa.Column(str, checks=[
pa.Check.str_startswith("value_"),
# define custom checks as functions that take a series as input and
# outputs a boolean or boolean Series
pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
]),
})
validated_df = schema(df)
print(validated_df)
# column1 column2 column3
# 0 1 -1.3 value_1
# 1 4 -1.4 value_2
# 2 0 -2.9 value_3
# 3 10 -10.1 value_2
# 4 9 -20.4 value_1
Schema Model
pandera
also provides an alternative API for expressing schemas inspired
by dataclasses and
pydantic. The equivalent SchemaModel
for the above DataFrameSchema
would be:
from pandera.typing import Series
class Schema(pa.SchemaModel):
column1: Series[int] = pa.Field(le=10)
column2: Series[float] = pa.Field(lt=-1.2)
column3: Series[str] = pa.Field(str_startswith="value_")
@pa.check("column3")
def column_3_check(cls, series: Series[str]) -> Series[bool]:
"""Check that values have two elements after being split with '_'"""
return series.str.split("_", expand=True).shape[1] == 2
Schema.validate(df)
Development Installation
git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements-dev.txt
pip install -e .
Tests
pip install pytest
pytest tests
Contributing to pandera
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.
A detailed overview on how to contribute can be found in the contributing guide on GitHub.
Issues
Go here to submit feature requests or bugfixes.
Other Data Validation Libraries
Here are a few other alternatives for validating Python data structures.
Generic Python object data validation
pandas
-specific data validation
Other tools for data validation
Why pandera
?
pandas
-centric data types, column nullability, and uniqueness are first-class concepts.check_input
andcheck_output
decorators enable seamless integration with existing code.Check
s provide flexibility and performance by providing access topandas
API by design and offers built-in checks for common data tests.Hypothesis
class provides a tidy-first interface for statistical hypothesis testing.Check
s andHypothesis
objects support both tidy and wide data validation.- Comprehensive documentation on key functionality.
How to Cite
If you use pandera
in the context of academic or industry research, please
consider citing the paper and/or software package.
Paper
@InProceedings{ niels_bantilan-proc-scipy-2020,
author = { {N}iels {B}antilan },
title = { pandera: {S}tatistical {D}ata {V}alidation of {P}andas {D}ataframes },
booktitle = { {P}roceedings of the 19th {P}ython in {S}cience {C}onference },
pages = { 116 - 124 },
year = { 2020 },
editor = { {M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut and {D}avid {S}hupe },
doi = { 10.25080/Majora-342d178e-010 }
}
Software Package
License and Credits
pandera
is licensed under the MIT license and is written and
maintained by Niels Bantilan (niels@pandera.ci)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pandera-0.6.4.tar.gz
.
File metadata
- Download URL: pandera-0.6.4.tar.gz
- Upload date:
- Size: 73.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a87c91fabe27e69f7088c437e97e371b60db4ccca19bf9e6e29d282f887434af |
|
MD5 | 8f444a10e83d841783133251b77e36ec |
|
BLAKE2b-256 | 22ec8b708b767d0a20d196b6873123f4ba1ee4478a2465892290409828fd7170 |
File details
Details for the file pandera-0.6.4-py3-none-any.whl
.
File metadata
- Download URL: pandera-0.6.4-py3-none-any.whl
- Upload date:
- Size: 78.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de44c5eae9683162dd15c5a21015550312840230d18a47936f52500b0da275dd |
|
MD5 | 32d09cfbf1543e78c6c93dbfc053ddd2 |
|
BLAKE2b-256 | dcbf777cf247aabf5754d50cef88e32208579415f82a0dd77695114ac39b660f |