Skip to main content

Parkinson`s Disease Kit

Project description

https://circleci.com/gh/pdkit/pdkit.svg?style=shield https://readthedocs.org/projects/pdkit/badge/

PDKIT

TREMOR PROCESSOR

Example how to use pdkit to calculate tremor amplitude and frequency:

>>> import pdkit
>>> tp = pdkit.TremorProcessor()
>>> ts = pdkit.TremorTimeSeries().load(filename)
>>> amplitude, frequency = tp.amplitude(ts)

where, filename is the data path to load, by default in the cloudUPDRS format.

Pdkit can also read data in the MPower format, just like:

>>> ts = pdkit.TremorTimeSeries().load(filename, 'mpower')

where, filename is the data path to load in MPower format.

To calculate Welch, as a robust alternative to using Fast Fourier Transform, use like:

>>> amplitude, frequency = tp.amplitude(ts, 'welch')

This class also provides a method named extract_features to extract all the features available in Tremor Processor.

>>> tp.extract_features(ts)

BRADYKINESIA

>>> import pdkit
>>> ts = pdkit.TremorTimeSeries().load(filename)
>>> tp = pdkit.TremorProcessor(lower_frequency=0.0, upper_frequency=4.0)
>>> amplitude, frequency = tp.bradykinesia(ts)

GAIT

Example how to use pdkit to calculate various Gait features:

>>> import pdkit
>>> ts = pdkit.GaitTimeSeries().load(filename)
>>> gp = pdkit.GaitProcessor()
>>> freeze_times, freeze_indexes, locomotion_freezes = gp.freeze_of_gait(ts)
>>> frequency_of_peaks = gp.frequency_of_peaks(ts)
>>> speed_of_gait = gp.speed_of_gait(ts)
>>> step_regularity, stride_regularity, walk_symmetry = gp.walk_regularity_symmetry(ts)

where, filename is the data path to load, by default in the CloudUPDRS format.

FINGER TAPPING

Example how to use pdkit to calculate the mean alternate distance of the finger tapping tests:

>>> import pdkit
>>> ts = pdkit.FingerTappingTimeSeries().load(filename)
>>> ftp = pdkit.FingerTappingProcessor()
>>> ftp.mean_alnt_target_distance(ts)

kinesia scores (the number of key taps)

>>> ftp.kinesia_scores(ts)

TEST RESULT SET

Pdkit can be used to extract all the features for different measurements (i.e. tremor, finger tapping) placed in a single folder. The result is a data frame where the measurements are rows and the columns are the features extracted.

>>> import pdkit
>>> testResultSet = pdkit.TestResultSet(folderpath)
>>> testResultSet.process()

where folderpath is the relative folder with the different measurements. For CloudUPDRS there are measurements in the following folder ./tests/data. The resulting dataframe with all the features processed is saved in testResultSet.features

We can also write the data frame to a output file like:

>>> testResultSet.write_output(dataframe, name)

UPDRS

Pdkit can calculate the UPDRS score for a given testResultSet.

>>> import pdkit
>>> updrs = pdkit.UPDRS(data_frame)

The UPDRS scores can be written to a file. You can pass the name of a filename and the output_format

>>> updrs.write_model(filename='scores', output_format='csv')

To score a new measurement against the trained knn clusters.

>>> updrs.score(measurement)

To read the testResultSet data from a file. See TestResultSet class for more details.

>>> updrs = pdkit.UPDRS(data_frame_file_path=file_path_to_testResultSet_file)

Clinical UPDRS

Pdkit uses the clinical data to calculates classifiers implementing the k-nearest neighbors vote.

>>> import pdkit
>>> clinical_UPDRS = pdkit.Clinical_UPDRS(labels_file_path, data_frame)

where the labels_file_path is the path to the clinical data file, data_frame is the result of the testResultSet.

To score a new measurement against the trained knn clusters.

>>> clinical_UPDRS.predict(measurement)

To read the testResultSet data from a file. See TestResultSet class for more details.

>>> clinical_UPDRS = pdkit.Clinical_UPDRS(labels_file_path, data_frame_file_path=file_path_to_testResultSet_file)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pdkit-0.4.8.tar.gz (37.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pdkit-0.4.8-py2.py3-none-any.whl (43.3 kB view details)

Uploaded Python 2Python 3

File details

Details for the file pdkit-0.4.8.tar.gz.

File metadata

  • Download URL: pdkit-0.4.8.tar.gz
  • Upload date:
  • Size: 37.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.19.7 CPython/3.6.6

File hashes

Hashes for pdkit-0.4.8.tar.gz
Algorithm Hash digest
SHA256 8e2c06b19d8dd3650fa91b2d22971b2a5b3351fbee2e6b2096ec748806019a0d
MD5 1f78fe74d48df4d259e2f2af3862c268
BLAKE2b-256 409c054d2a0127f4657f3316ae9d28e1aee480cb7903e19b0a564897e4e65c63

See more details on using hashes here.

File details

Details for the file pdkit-0.4.8-py2.py3-none-any.whl.

File metadata

  • Download URL: pdkit-0.4.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 43.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.19.7 CPython/3.6.6

File hashes

Hashes for pdkit-0.4.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e45441fc69fb616c7016622102c403f44c0c8cccef81f7ba09511dabf903212d
MD5 b9ebdffc03f67025225855970086ca13
BLAKE2b-256 f6c2f64e6f9e6b034ee36135630799da1b7e0e999ddd0557545f59304f5ff436

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page