Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.10, 3.11, 3.12, 3.13, and 3.14.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2025 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pedalboard-0.9.22-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp314-cp314t-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

pedalboard-0.9.22-cp314-cp314-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.14Windows x86-64

pedalboard-0.9.22-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pedalboard-0.9.22-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp314-cp314-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

pedalboard-0.9.22-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pedalboard-0.9.22-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp313-cp313t-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

pedalboard-0.9.22-cp313-cp313t-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.13tmacOS 10.14+ x86-64

pedalboard-0.9.22-cp313-cp313-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.13Windows x86-64

pedalboard-0.9.22-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pedalboard-0.9.22-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp313-cp313-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pedalboard-0.9.22-cp313-cp313-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

pedalboard-0.9.22-cp312-cp312-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12Windows x86-64

pedalboard-0.9.22-cp312-cp312-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

pedalboard-0.9.22-cp312-cp312-musllinux_1_1_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ ARM64

pedalboard-0.9.22-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pedalboard-0.9.22-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp312-cp312-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pedalboard-0.9.22-cp312-cp312-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

pedalboard-0.9.22-cp312-cp312-macosx_10_14_universal2.whl (4.7 MB view details)

Uploaded CPython 3.12macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.22-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11Windows x86-64

pedalboard-0.9.22-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pedalboard-0.9.22-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pedalboard-0.9.22-cp311-cp311-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

pedalboard-0.9.22-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10Windows x86-64

pedalboard-0.9.22-cp310-cp310-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pedalboard-0.9.22-cp310-cp310-musllinux_1_1_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

pedalboard-0.9.22-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pedalboard-0.9.22-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pedalboard-0.9.22-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pedalboard-0.9.22-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10macOS 10.14+ x86-64

File details

Details for the file pedalboard-0.9.22-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3516148ec4fa6c35603a8d97cc849c659bc7be77f9b0a6cc7763dba75408578b
MD5 f0137df0d20e142ddc9cd98ee8586d5a
BLAKE2b-256 0c52d9d0e67e38323513df2cf952f1395daa78cbdc1f7239d3b045565ffb6f6c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 493b059de75b557e6b96c72bacf649030d547c4aa162cb6f2f8a30271b2b61aa
MD5 454d9f74b3bf94e90c0c74dc40ad7378
BLAKE2b-256 ab50a01b9334449ff8f90bc1b2c90b81bcf7ead6352151c89b6deb3c3fb7db63

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 a6184457152632bea704bc66995537985139103a6b17569fc1e253b304837ec5
MD5 acd39ce8654135dc6fd506102de19157
BLAKE2b-256 0b86cf974223287b383b205356381433a030ec8533a22c66418b643f9b8be3de

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 630fead1b6e15119e5ed38309631b073f7d482db25cdfb7c339a00b5bd5706ae
MD5 d191276018509c56e99c4d81613879ee
BLAKE2b-256 f7751bdbaa14b55fab52301b36b84c2708d57b0cd07bd84f49b1bb1f65f1dc9f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 51339d6bb2bbcd7bf664fdeae2beb49513eb2278ab5f165db156f1f144994948
MD5 475e6b52b16a927278c62fbaf28c4996
BLAKE2b-256 9bfef4871f931ae8d765a41836b2660689b99db520001efa702b30a822cdbbbf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3d75659cba566421712eaf9aa7e53f9fa9cca02964cdcd232f3b1c830fecad3
MD5 56d7e799a6b07d7f68ecfd7183dd3091
BLAKE2b-256 aa261901deee42e2f889bacedb6a05a973db96476ae0e24e7c9e70ecf85921ea

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5c1efa3f8112a0d1609ddf0dacfc881a92c253fd3869ca28ef3b6c4e004800fb
MD5 d0d2b9da632de1f8db6d926126323cca
BLAKE2b-256 b6c34f518534fa23a02c83288a4a2faeaea8c36c6a9e73a18d542e68fbc0442d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e1a6cdb9e3fa591530497302e28e32e7f6eb3f1bb7a275d70840f3bdfcfedf35
MD5 33f0f49905dba8145fb4b82ead1969f8
BLAKE2b-256 9d6dcf29b69a81a4be5c79162a5abfb7591dc19a814a12ff0eb6d0a842fe6f21

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3108beaaaa2341c635c4ab56278a7b556f6947535d32ad8430dd68de3214df8
MD5 7b25c375f24a54212fdcd1c7e7ab1119
BLAKE2b-256 8e7f882631416bb0488c19857d71900ca3beeb66b504af69ca89f8ff7f44a038

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313t-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313t-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d87ddbd13aeea3523684367f364e8c9a0d4d00525e2ff01a88048a5652356797
MD5 19f3e5a5b6501a9016978f2616a2871b
BLAKE2b-256 352ff2c3cba2896f239d2f0b22a7114a9395f41af548856657c231ea64838454

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 660f1993517386221cc3acf2da96a3257d428ae2b9d97802df484b4d3d32b3df
MD5 1a77a65d70fdf4e8b30fcae7f4c7a594
BLAKE2b-256 1ee27d32778b0cda30bf81e8d522150075f63673cd53aa009862773728f10699

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b00a9223f14bfb33dca43d12d7f8cf7d91b3f521da453124961da33a46b77ed7
MD5 f095503f74c3f233d39117086eba3d04
BLAKE2b-256 250b672f2b0d9bf9dca56290c845a91e64969adb40eec0a8d3fc4cdf4ef3f5f1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 472abd00d9553db507f7380d19362dbb10a15344512219c2d0447b19a972d61a
MD5 ee1b5a0648f7b503debb60e47d8ba2a5
BLAKE2b-256 93dd7130967ed07057fdcc3ec0d468901f3567fdb016d655e398cd90d0ef9ece

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e06d648590a4dcf2a9914f96d1b18465688c55ce890906ba13ed56866f72e91a
MD5 c64d3cfcdc68821a8b26dab01b9b6563
BLAKE2b-256 0da14dc73328d2883fdd6f0f4ce29627bbe398a442fabee6e8f7194d83c14e33

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 001a1b94a98cabadb697cd410545fe16de6949dd80bb6f0768af682832f28873
MD5 492a1c5e48ee79a7da94da948dd26d0d
BLAKE2b-256 7a144d40d257bf6f26badc20826183133f635028d9b2b6657af3a460ea63e1be

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f027be64854e378ae520481f51121111f1e7c857e2258b6f31e97437bb37b5f1
MD5 52db1e4e695f68fd92e8c17aad353cbc
BLAKE2b-256 5062d65b8077aa337c38e41b7ee3a84257a71e444dead107e644277c8c4600cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 10b0250e20cd19b24f6c5bc8ed6e22c5d289f684d50dd46d7fd57a240b4d1acc
MD5 d09f44c5df1c9b5707aa33ac12687a39
BLAKE2b-256 9804cdfbc7d461ae50cc3a90a226280ac029d89a90863062bf8103d623de965d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1678b5efae53865cdf431e9b8c41721d3255e8304905376e52a285cc5afb926a
MD5 6d6f885076fc66690e91f8dbbd16c0b5
BLAKE2b-256 2f0699debe3b09b6ad61d39eedc03a0d02d0e5f2e45f113e26bab7b0154e4bc3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4e6dd9f072dc5e08c666d3eb28b262f594521a9eebb37d5f157d33ebb8bf22ce
MD5 8386c4c44360302c81089617d82b7b92
BLAKE2b-256 be3c1ef8d9daf405c9cf3566a4b929f3c6396424f7b535fefccdf9123817625d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 78c89a7185fa549d7830668731b0b3ca4118224dcd1e28031a2ee12a46a95941
MD5 09193bfb86266e5e3492f36269f6bb41
BLAKE2b-256 1772179cbb53d58f08e5bb21a63efdc47046d27f23f70a71cabd61baaa9b87a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e365b564cbf5f318ab725bfcdcbe88d31e0ae4cb160ce33b62ad6d0d74f183a8
MD5 3f53b044ab7ce96e28ba0a13a0624de1
BLAKE2b-256 3cccba34faf9925e18a53e81f2d291c95a577a4af27ee5b970baae3014e69bb5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64437b7b46ead7a0d56511bf8b0b7a61e69b7bd8440d0cc6bd928a95271a2457
MD5 e2ddcca1c5f72f5e37cd649a165b5bdb
BLAKE2b-256 275a0aa0f6f91a2ca6a6e4b30774d02abb72c1cf12559eb6eff812714e04a9fe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp312-cp312-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp312-cp312-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 1fc17ce9a680d983793444275b5c6fc51aba41633cda1fa350e9e4146125fe82
MD5 3d2034337ea81e795508c670bc94ebc1
BLAKE2b-256 903ffc517b4652ae97993cafcb379125dff736c2ebc5c11f141fb728dc9fd779

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 48429f41ddca670a83d67f9f15f799f80135fd630ba0db78fcf5bf58f357f727
MD5 09c326d3b40c05f2cfd0b7990778e78a
BLAKE2b-256 f4fe399c12699de895e71102100da5cc50b45433e254aad06df4fd583f7dbd41

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7f6065672ebe8423b4c4bd7becd69514ced2eb2ed65023e719c928162812e69d
MD5 9d06e32f6cd387d0bc014f11fb8264e3
BLAKE2b-256 64a7a779f606a698e1da5083ac3ad010b839bc329aea0a4d1c6d97620905de3c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 02d6c566088a0bea2dfce438e768c2cdac34a739511d8ede2267f38552b86e9f
MD5 8efdd894e9264842d9465ed5a001c167
BLAKE2b-256 b083e07bcdb221f2b4c9c7cd98d035aaa5a0cdc088cab498763147f59284325a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29ce0ca5fa6747c1022af3c2229f1bb7ed8c594a8bad77978485e3f1ea9916f2
MD5 6c02a09002feaf3c47ed5d17b15bf2b0
BLAKE2b-256 b986c207558a91cac77301b4ab89810c71a218a64c4cdfc9edeed793a3f44f40

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e644ae2dfa75ab4188d5dae3d120072ac5adf0279d8c4c20ed4382460327597a
MD5 a66600889bd5d9b566b7d22a731adf52
BLAKE2b-256 7b9635df5d924b25b085616c803796de21cc3ce992a92bd62b289ca30afeebb4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d37dc78a7b7e7c3928dcd8edbc1db08c69351d306329a5fc7c32f976c224803b
MD5 1305070e12c828d653ece96a60128339
BLAKE2b-256 2f6168970170a48a2df6f2f2fc1c7b6f55392e772b7e06425da4fcf5a7c4a066

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5827bb0f7cc09e7799d394f407fb997cd02d7bb10c1dc96ab90dc6a9742735e7
MD5 44dfe2eb5f5aea6693daab261575df24
BLAKE2b-256 5478e25ecf719509c0bc8f9884edbb9c0e9da329790d34e9c5074d781791f9f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9b634cf9768c3168fb70ab2ae3d839329a64fb1bac8da183a1faab3d49b7b9ca
MD5 abc2811237674d02b43d48d5da4f49d8
BLAKE2b-256 8d1bc119552a34e1db7dd27420d95987563d376f43663d2cf8c754fa0b1edfd0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4d921121609148fe0134745d437eeeba8bd04753c81a0fafd9d11a49dbf113ee
MD5 3e03006f26c42dd6ed497d8fa0e2faa5
BLAKE2b-256 52923a1c862af3591340d4b9326bd5e8f85bf90c8f436bd114cc23c3aa7f0319

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5a3acf2a395faeaf0d51d8e5807d32ed554ea16b8b9962fff2b8e366241761c1
MD5 8d41183b026d42152ad0e501a45b143f
BLAKE2b-256 bf6aee690eb4323f8f4fdc9d086016029f55119cf8486aca39e8cec96c0a4544

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e771cfc796a04e132922b914131596f142b731ebf8f02587991f3697c5723eb
MD5 35df78a7037f019a7e9cfffcf71dc36a
BLAKE2b-256 b47b21c41d9a87ecf4074fd1d51150c376e46e82554a152093bb189822aa9bcd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.22-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.22-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 53529e5c57d6d8504bf1473422590d8ef324ba7ad4887bd7b3b65055c44dcc45
MD5 7f9f72a4e91371cc45334dc16019143e
BLAKE2b-256 0448543e67204b286a026e96f3d7c4dd24a75613038743087371d2a391cd1e81

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page