Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.17-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

pedalboard-0.9.17-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

pedalboard-0.9.17-cp313-cp313t-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

pedalboard-0.9.17-cp313-cp313t-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13t macOS 10.14+ x86-64

pedalboard-0.9.17-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.17-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.17-cp313-cp313-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pedalboard-0.9.17-cp313-cp313-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13 macOS 10.14+ x86-64

pedalboard-0.9.17-cp312-cp312-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.17-cp312-cp312-musllinux_1_1_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.17-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.17-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.17-cp312-cp312-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

pedalboard-0.9.17-cp312-cp312-macosx_10_14_universal2.whl (5.0 MB view details)

Uploaded CPython 3.12 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.17-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.17-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.17-cp311-cp311-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

pedalboard-0.9.17-cp310-cp310-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.17-cp310-cp310-musllinux_1_1_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.17-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.17-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.17-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pedalboard-0.9.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.17-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.17-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.17-cp39-cp39-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file pedalboard-0.9.17-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9d3a5e4a97f4daf34836e4624147d9fcf1c90be4fc8bd2e60371abafb3e676a
MD5 a0809b4e4c9a14ab9d0f283ee71d127f
BLAKE2b-256 34b32250bd2caf36177b51224012e6ba485d3f193d0d0203df297c02a438b860

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d02f078f1bb134f63f04eef041c311beba7f3a0d0b84b4c86b48874d903113d
MD5 a30b562aacc658e8921fd30df919e374
BLAKE2b-256 b604e5f2a4e9e1d3dc99fd7e8524316e650ed59367e77b52ec984e3fc37351aa

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02985d319baf1ad75572854e5eba3edc45d42d4ead2ef03e333d4859fc7afa0e
MD5 fbe3e2f60fc52891dfa03b31e2081ec5
BLAKE2b-256 cfddbbdc8eb6ab7b067460cff576fc8ac682002daee989234dfa3c0f0ef27e73

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313t-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313t-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a1b456239f73770a4ce8e9ef3e0c8f622248d4595fe6c368a688fc2a62a38497
MD5 1183400b4492181dd43f2476276fdcde
BLAKE2b-256 7248e6a68ffc8351befd097d59a7f39998b57bc0df54d4f70350aa29ee2e56a2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e34585c036149612b7a0e82218c0c1d54ef431d5f94ec4e822badaebcb4159e2
MD5 4c098050c98d3d0fe0e854ae7cae7b6a
BLAKE2b-256 a35337062f43089e6079a44008753caa536e23f2861ccff8a748b1f5a44657f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51aa6d3da97d0f78df3d21e3cc9325f2689c9c746db9794eb7c97d6bc37f7b8d
MD5 cab5788973fb2a56127d1e2dfd022456
BLAKE2b-256 8fda47106711d8b3fc5b588d4f834827dd193fe21fb946e934552fbc9b4c9fbb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df322a8fd092fe0aff5940f15fd4e3cccf54d7b2d340056487e3667b0377ff6a
MD5 1663fc26d00ed903e7287e07681ccf8a
BLAKE2b-256 ac8b148bb209a9a87f290f6bdbc8f8f304304f44bb622d5211c2ec9e247311ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 55e9f6659245a882ff783a23219edcf51ede8305772f4595a47698fe443086d8
MD5 81b81dfdd787cd78e7b53f6d6ad43466
BLAKE2b-256 2916acda34c777e7a3c0f67d2764fd7e064246d0e959b7c3dd085e531af4b593

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6286e96aafa83691ca7601b94cba35a47ba0c96bb7336cc04e117e249339b597
MD5 88eb50d852f7f4eb16afad714285e8c6
BLAKE2b-256 3fbb38a68d61a4f6da4e0930d732c5efde27b103fe7528060ca0dbc1acd1017e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a3446a541ec006dbde94fad5dd5512c58deb38bf3c6d6fe2918ec483ebf1e6f0
MD5 ee79fbd679ff675526b9bcb64463f9c8
BLAKE2b-256 f5fb4cdf8748c587dfa74572e4add0597223a3d9080baa1668ac729bc152e4c6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a7c6ee49c8c9eabe0c787450f440fb8d3857949cff03299805134ac519887ea
MD5 c84b4d82265ae0bffbfde5ac314ad52a
BLAKE2b-256 bf434079fbea1b68b70511bbf53c4bc7d654dfa9e7c28a1b1ddaefd0214bf477

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b81de1a41e0089c39e3a2d140b579536af9bd9b48c7f1690148df287fa11d45
MD5 ed896029e51da9ff545433e1daf848e8
BLAKE2b-256 178fe09bd54e1cf31f8d0fd65e7ab136644ad74c733f4e8911989cf397ea0785

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e0d917e814f1e48e3b8b7927d50153c08e341d371d54a1e3c9312aa7d404e42
MD5 c345c1183965728a4e3d9122724a048d
BLAKE2b-256 22320d47ab1b9ba1739677d951a44b70c52c8e15618e53a6eeb0e5a788a73c53

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0daa30794a169201671395c0a5da7cb225e39ef05055d9c9e81cf878de65e285
MD5 f2314c67c4ab9152affa8f0bfeee59d5
BLAKE2b-256 a096355d3170fd8fb903d782dcbdba475e3c9303acd3cca8c54bd1d7c77eb95d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp312-cp312-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp312-cp312-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 2f98720a207c04c0cf20f7ef01f2ec0762cc8712dd1f69982dd6508a97b43d5c
MD5 b6d703baa5b4d61dd3092b4cd5a8c1cc
BLAKE2b-256 686fd0ca90b91ba19b17796d5c4b1b722e32f7528c50571b3755d3604ec64822

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75446b3ff4ce266f26c8007af3b7caedb91af9f8cb4bc0b6436cd5a185a263cc
MD5 ffaf1c2a390d90e9c0056d4c28288c81
BLAKE2b-256 64d04c5cd1fcae227c25e07561c3768b838706e6f4e08dc05f4f89769175a1db

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3413cd0a3bb2ffa2d2d475269e5bf33289631b4819fb07a8b22e2a4cc72018f1
MD5 25246765b72c96d11ba330f6063382b8
BLAKE2b-256 59d4c00849f5570321ea474218beb2870e1194a5138b830c961be25717fb43ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2d8e7088d4bb80e29740ae0cced608e27da1449895f3bf94da871d9088bac07
MD5 bbe7eba56bc11ca9f58ca7e0c2041eda
BLAKE2b-256 3b0411a4918a5a9777284a57ef97cfee199e325341d2981151d660c32421048e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 002cfa821859e3231aaee14a32f2d80afaeeb29d2911c64392382690ce2916ac
MD5 ff43368ed9ad4989874b0f184a66cbdd
BLAKE2b-256 a1961646aa7253c71909f1aaa66892140b72224184ad19b6a7e7d196785e7611

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8cf4c93544aec9e936ccbb5d3424b115fd9a677a7d4f37b2365f2b618b82ff91
MD5 d691ff8417c6906cf54ac3446b43a863
BLAKE2b-256 5eacd8092f6293b6793b2e651b58ef900274e7859b5c49c17482b9d786cd9df9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dc474b870d9832106b4d33c21c298791281213d034bc60fc00a6b4b72f065f3a
MD5 df5b77773fbfd03fd55696794bb94167
BLAKE2b-256 2abd46604cf8b71527d4d50ece4e46051d59bc6c9feea22d385cc3a598ad4d00

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a486d2875e9d5dc4f0d2d8d7803178f482d87d3491a596f3d4ee26d3d7544e5
MD5 5e0b77363189c0a919f66dd544aeaa7e
BLAKE2b-256 6b5334f7aad5f7ea9fa312f460668f6e98d59110c30f1d7022b2a598e43d554d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a1879031caebe2efad23c479281f7167554490434f13154121d9ee023083837
MD5 595befa7d21b8fc5742b8988a3f454ed
BLAKE2b-256 2ad94d3a56e8041964372fee8d2041d37c0204b24fc3fa444c0e1f837e7cbcd9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1af848b1509e87281916a9d686473756cf4b3dca36e96b8ee94877d59219cf2
MD5 110114773625a9fec04541a06338656c
BLAKE2b-256 0788e9823ae2f628406600378b50aa7495f9fa60b5dff127d318cc60ceaab354

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b42627d423a51acfbd5849c575c5cbbc1c4e3978f95cc11509885f28a2338977
MD5 9e5e08fbf1f74a85abce9794a9fc7858
BLAKE2b-256 7423de31807442f48a5d70e775ed789801446bc5bf9f8684749df501b5377cb1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5407b6798cafddc12af7010dd66b2785070868eeb6f7cf5261ca27ebf34e85f
MD5 4f3073db3bf3c69c7fcb889f97b340b1
BLAKE2b-256 756030b48642dcc96a5f58d3deb7b2f6a14b42ff62925985a46dd67a87d2bee3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6967e6aa8d47815f4d672faa7bb706891d09500ab0cb37088ac8b985856477f6
MD5 ac4f017d0c5a687e2a64f60eb6f3d698
BLAKE2b-256 002022c724f248aa6bebfd2b21e27041f8fe4190cb15c3cd57a3c639c54b22bf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e8cc9d61a8bd56ada4a5d894bc1960315457667108b7cdf04566d86e1c99f69
MD5 eca0b22e47dd27a4174ba6cc42a44419
BLAKE2b-256 96a06c6f5b038ecd90d6f6f13e9d79a63a1b0019fb2b43e5c556c359874900ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.17-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.17-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9b887f439434a68bfaf510cf6de5bc09a89bfaaf288e3f1371603c938621869d
MD5 1b37ecdb344f857456459fdf66e9f3c8
BLAKE2b-256 70430825b2a5bd6ba783fce5fd64817c8537490ef9f7fb148d711ce34a8e5186

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page