Skip to main content

Awesome pepboost created by pgarrett-scripps

Project description

pepboost

codecov CI

Awesome pepboost created by pgarrett-scripps

Install it from PyPI

pip install pepboost

Results

The results are not great when compared to deep learning approaches, but they are several times faster. There is a lot of room for improvement. No alignment is performed, and the models are not optimized.

Training RT model...
Found 0 inf sequences.
Found 0 nan sequences.
R^2: 0.9139231539453871
          Retention Time: Predicted vs Experimental
┌────────────────────────────────────────────────────────────┐
│                  ▖          ▗    ▄ ▗▄▄▄▄▟▄▄▄▟█▄▙▟▙██▟▄█▟▖▘▝│ 
│                           ▄ ▄▗▘▌▐▛█▐▜████████████████▜▛▌ ▝▗│ 
│                   ▖   ▗  ▟ ▖▛ ▗▜▐███████████████████▛▝▀    │ 
│                  ▝  ▖▌ ▌ ▟▖▝▀▖▟██████████████████▛▛▀▄▖     │ 
│        ▗         ▘     ▘▖▗▖████████████████████▀▛▘▀▘ ▘     │ 
│             ▘▝ ▝ ▝ ▄ ▞▜▐▄▐▙███████████████████▀▌  ▌     ▘  │ 
│           ▖   ▖▖▚▄▗▀▞▘████████████████████▛▌ ▛▀ ▄▘         │ 
│        ▝▖ ▘▗▘▄ ▖▐▞▀▟▙██████████████████▘█▌ ▀   ▘           │ 
│        ▝   ▝▖▌▘▚██▙██████████████████▜▟▘  ▖▌               │ 0.5
│       ▗ ▗ ▌▐▟▚▜▜████████████████▀▀▌▚▘▘ ▖ ▖ ▗▝              │ 
│▘  ▖     ▐▖▗▘▟████████████████▜▘▐▐   ▀▖              ▝      │ 
│     ▖▝▗▖ ▜█████████████▛▛▀▚▘▛  ▘▝▘▝              ▖         │ 
│   ▝▖ ▝▐▙███████████▀▜▀▌▘▘▝   ▘    ▘     ▘                  │ 
│    ▗▟██████████▜▀▘▘      ▖                                 │ 
│▘▝▝██████▛▀▀▘   ▘     ▝                                     │ 
│ ▄██████▘     ▘  ▗                                          │ 
│▁▚████▛▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▖▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0.0
└────────────────────────────────────────────────────────────┘
          0.2         0.4        0.6         0.8        1.0
Reading Files: 100%|██████████| 29/29 [00:08<00:00,  3.62it/s]
Training IM model...
R^2: 0.965236664924016
           Ion Mobility: Predicted vs Experimental
┌────────────────────────────────────────────────────────────┐
│                       ▖    ▝▝      ▖▗▝▖ ▖ ▗ ▟▄▗██▟█████▟█▌▝│ 
│                         ▝        ▖  ▗▟ ▟▗█▄▙█▟████████▘▘ ▖ │ 1.4
│                                 ▗▖▖ ▗ ▄█▗▟█████████▛▛ ▘ ▖  │ 
│                            ▝▖ ▖▖▐█▖▙▟████████████▛▞▀▘      │ 
│                           ▗ ▞▟ █▛▟████████████▀▚▝▘         │ 
│                       ▝   ▄▄▀▙██████████████▚▘▘            │ 
│                        ▐▗▐▛███████████████▝▘ ▗             │ 1.2
│                      ▄▄▄▟█████████████▙▚▀ ▝▗               │ 
│                  ▗ ▄▟█████████████▜▀▘▀▗▘▗                  │ 
│               ▖  ▄▟███████████▛▛█▜▙▘▜ ▖▗ ▖ ▀               │ 
│              ▄▄▟▟██████████▛█▜▝▌▚▗     ▖                   │ 1.0
│            ▄███████████▛▛▛  ▝▘▗▘ ▖    ▖                    │ 
│        ▗▄▙███████████▀▜▝▘      ▝     ▖ ▘    ▗              │ 
│       ▟██████████▛▀▘ ▘ ▝       ▘                           │ 
│   ▗▟█████████▛▀▀▝                                          │ 0.8
│ ▗▄████████▀▀▘▀                                             │ 
│▙▟████▛▀▛▞                                                  │ 
└────────────────────────────────────────────────────────────┘
       0.8            1.0           1.2            1.4
Reading Files: 100%|██████████| 29/29 [00:10<00:00,  2.90it/s]
Found 0 inf sequences.
Found 0 nan sequences.
R^2: 0.8719144805523465
             Intensity: Predicted vs Experimental
┌────────────────────────────────────────────────────────────┐
│                 ▖▐▝▌▞█▘██▜▜▛█▛▙█▚█▙▟██████████████████████▛│ 1.0
│                 ▟▞▟▗▖▐▀█▚▜█▟▌▝▟▙█▜████████████████████████▙│ 
│                 ▗▛  ▝▖▖▟▛▐▙▚▄▛█▄██████████████████████████ │ 
│                ▗▀ ▖▄▘▙▖▙▟█▛▞██████████████████████████████▖│ 
│                 ▄█ ▖▚▖▙▜▙█▟███████████████████████████████▖│ 
│                 ▖▚██▐▄█▙██████████████████████████████████ │ 
│                 ▝▟█▟▙████████████████████████████████████▌ │ 
│         ▝      ▝│▟██▛████████████████████████████████████  │ 
│                ▘▐▛███████████████████████████████████████▖ │ 0.5
│                 ▟████████████████████████████████████▙█▌█▀ │ 
│                ▖███████████████████████████████████▙█████  │ 
│                ▗▐██████████████████████████████████▀▙██▙▙  │ 
│                ▐█████████████████████████████████▟███▐█▀▖  │ 
│              ▜▚▐███████████████████████████████▐██▟▌▜▝█▌▝▘ │ 
│              ▝▖████████████████████████████████▙█▛▛▘▞▌▀▙▞  │ 
│           ▘▖▗▐████████████████████████████▛█▌▀▘▜▛▛█▛▙▛  ▝  │ 
│▖▖▁▁▁▗▐▖▝█▙▙█████████████████████████████▟███▟▚▟▞▛█▄▙▙▄▗▙▗▖▁│ 0.0
└────────────────────────────────────────────────────────────┘
     -0.2        0.0        0.2        0.5        0.8

Development

Read the CONTRIBUTING.md file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pepboost-0.1.0.tar.gz (373.6 kB view details)

Uploaded Source

Built Distribution

pepboost-0.1.0-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file pepboost-0.1.0.tar.gz.

File metadata

  • Download URL: pepboost-0.1.0.tar.gz
  • Upload date:
  • Size: 373.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pepboost-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1871ebc75d617675c20bbd2fc425fb6d12211aeefff54d4fd0edb13bc9aa9e54
MD5 f10f77cdf8bf66cfafe948018c3af444
BLAKE2b-256 fe389a4399ee6b3c954591003d38476e0976e82370963c49656debc15c91a7d2

See more details on using hashes here.

File details

Details for the file pepboost-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pepboost-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pepboost-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 de61ad47b40e5db970b7060aa9dd0cc7c25a747371ba83dff43784b6c6982f37
MD5 f197560227f211404caba5dc2ed96861
BLAKE2b-256 69ee76ff3771967a8aa7ff01a23c0bdfc07d31aee33fe40d683a02a1c0c3719b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page