Skip to main content

Search tool for peptides and epitopes within a proteome, while considering potential residue substitutions.

Project description


Unit Tests

Author: Daniel Marrama

Peptide search against a reference proteome, or sets of proteins, with residue subtitutions.

Two step process: preprocessing and matching.

Preprocessed data is stored in a SQLite or pickle format and only has to be performed once.

As a competition to improve tool performance, we created a benchmarking framework with instructions here.

Requirements

Installation

pip install pepmatch

Inputs

Preprocessor

proteome - Path to proteome file to search against.
k - k-mer size to break up proteome into.
preprocessed_format - SQLite ("sqlite") or "pickle".
preprocessed_files_path - (optional) Directory where you want preprocessed files to go. Default is current directory.
gene_priority_proteome - (optional) Subset of proteome with prioritized protein IDs.\

Matcher

query - Query of peptides to search either in .fasta file or as a Python list.
proteome_file - Name of preprocessed proteome to search against.
max_mismatches - Maximum number of mismatches (substitutions) for query.
k - (optional) k-mer size of the preprocessed proteome. If no k is selected, then a best k will be calculated and the proteome will be preprocessed
preprocessed_files_path - (optional) Directory where preprocessed files are. Default is current directory.
best_match - (optional) Returns only one match per query peptide. It will output the best match.
output_format - (optional) Outputs results into a file (CSV, XLSX, JSON, HTML) or just as a dataframe.
output_name - (optional) Specify name of file for output. Leaving blank will generate a name.

Note: For now, due to performance, SQLite is used for exact matching and pickle is used for mismatching.

Note: PEPMatch can also search for discontinuous epitopes in the residue:index format. Example:

"R377, Q408, Q432, H433, F436, V441, S442, S464, K467, K489, I491, S492, N497"

Command Line Example

pepmatch-preprocess -p human.fasta -k 5 -f sql
pepmatch-match -q peptides.fasta -p human.fasta -m 0 -k 5

Exact Matching Example

from pepmatch import Preprocessor, Matcher

# proteome, k, preprocessed_format, target directory, gene_priority_proteome
Preprocessor(
  'proteomes/human.fasta', '.', 'proteomes/human_gp.fasta'
).sql_proteome(k = 5) # preprocessing only needs to be done once!

# query, proteome, max_mismatches, k, preprocessed files directory
Matcher(
  'queries/mhc_ligands_test.fasta', 'proteomes/human.fasta', 0, 5, '.'
).match()

Mismatching Example

from pepmatch import Preprocessor, Matcher

# proteome, k, preprocessed_format, target directory
Preprocessor('proteomes/human.fasta').pickle_proteome(k = 3)

# query, proteome, max_mismatches, k, preprocessed files directory
Matcher(
  'queries/neoepitopes_test.fasta', 'proteomes/human.fasta', 3, 3
).match()

Best Match Example

from pepmatch import Preprocessor, Matcher
Matcher(
  'queries/milk_peptides.fasta', 'proteomes/human.fasta', best_match=True
).match()

The best match parameter without k or mismatch inputs will produce the best match for each peptide in the query, meaning the match with the least number of mismatches, the best protein existence level, and if the match exists in the gene priority proteome. No preprocessing beforehand is required, as the Matcher class will do this for you to find the best match.

Outputs

As mentioned above, outputs can be specified with the output_format parameter in the Matcher class. The following formats are allowed: dataframe, csv, xlsx, json, and html.

If specifying dataframe, the match() method will return a pandas dataframe which can be stored as a variable:

df = Matcher('queries/neoepitopes_test.fasta', 'human.fasta', 3, 3, output_format='dataframe').match()

TODO

  • Test other key-value stores (Redis, Memcached, LMDB, etc.)
  • Remove dependency on Levenshtein (this is not maintained very well)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pepmatch-0.9.3.tar.gz (21.5 kB view details)

Uploaded Source

Built Distribution

pepmatch-0.9.3-py3-none-any.whl (23.7 kB view details)

Uploaded Python 3

File details

Details for the file pepmatch-0.9.3.tar.gz.

File metadata

  • Download URL: pepmatch-0.9.3.tar.gz
  • Upload date:
  • Size: 21.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.16

File hashes

Hashes for pepmatch-0.9.3.tar.gz
Algorithm Hash digest
SHA256 5bccc99a89e5d3298589492bc683f94fdf3f21fdbe8c952bbb23828b815ad52c
MD5 0c1afb285b8777afc9015abe98dda87d
BLAKE2b-256 f0a5d693fc5f0dba2cbd92a4b5e48ebc95e14196dbf3499387fa68841dc159eb

See more details on using hashes here.

File details

Details for the file pepmatch-0.9.3-py3-none-any.whl.

File metadata

  • Download URL: pepmatch-0.9.3-py3-none-any.whl
  • Upload date:
  • Size: 23.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.16

File hashes

Hashes for pepmatch-0.9.3-py3-none-any.whl
Algorithm Hash digest
SHA256 11809eb47d2a88f206bbe291433cba209442e475e5a1845271570f959c056409
MD5 441565b72f40e9931e3f1074f447be46
BLAKE2b-256 3d8eb93d9d85de970befe31f386be0e14a2b067bcb832d0e9b0b0ba0a601f8fe

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page