Performance indicators calculation and Time series visualization
Project description
Features
Performance indicators calculation
Supports single time series data and multiple time series data with different time spans
Time series visualization
Installation
You can install “performance-analysis” via ‘pip’_ from ‘PyPI’_:
$ pip install performance-analysis
Usage
Performance part
from performance_analysis.Performance import Performance
# Input return data
raw_return_data = pd.read_csv("./raw_return_data.csv")
# Just some examples. For more functions, you can explore the package
ann_rtn = Performance.annualized_return(raw_return_data, period = Constant.DAILY, logreturn = False)
var = Performance.value_at_risk(raw_return_data, significance_level = 0.05)
sharpe = Performance.sharpe_ratio(raw_return_data, risk_free = 0., logreturn = False)
calmar = Performance.calmar_ratio(raw_return_data, period = Constant.DAILY, logreturn = False)
Computes personal specified indicators
'''
indicators = {
0 : annualized_return,
1 : annualized_sd,
2 : max_drawdown,
3 : sharpe_ratio,
4 : calmar_ratio,
5 : burke_ratio,
6 : downside_risk,
7 : sortino_ratio,
8 : tracking_error,
9 : information_ratio,
10 : capm_beta,
11 : capm_alpha,
12 : treynor_ratio,
13 : skewness,
14 : kurtosis,
15 : value_at_risk,
16 : conditional_value_at_risk,
17 : omega_ratio,
18 : tail_dependence,
19 : TDC,
}
'''
args = (0,1,2,3,4)
kwargs = {
"annualized_return" : {"returns" : single_return_data},
"annualized_sd" : {"returns" : single_return_data},
"max_drawdown" : {"returns" : single_return_data},
"sharpe_ratio" : {"returns" : single_return_data},
"calmar_ratio" : {"returns" : single_return_data}
}
performance = Performance.performance_dashboard(*args, **kwargs)
Plotting part
from performance_analysis.Plotting import Plotting
# read data, set index and convert to datatime
single_return_data = pd.read_csv("./single_return_data.csv")
single_return_data.set_index(['Date'],inplace=True)
single_return_data.index = pd.to_datetime(single_return_data.index, format='%Y%m%d', errors='coerce')
Plotting.plot_cum_return_and_drawdown(single_return_data)
Plotting.plot_monthly_return_heatmap(single_return_data, show_text = True)
Plotting.plot_seasonal_effect(single_return_data)
License
Distributed under the terms of the ‘MIT’_ license, “performance-analysis” is free and open source software
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file performance-analysis-0.1.8.tar.gz.
File metadata
- Download URL: performance-analysis-0.1.8.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.14 CPython/3.8.13 Darwin/22.2.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a39284d34e2e818d2ceadcc0af391ca6232861077178ec430538d2e42df177b2
|
|
| MD5 |
2b588b98cd90805846123f49c2718b53
|
|
| BLAKE2b-256 |
efb83e4136df0a2ba98e41d9470da52a13f7da72d1a391f06a2bfe8ef5580f6a
|
File details
Details for the file performance_analysis-0.1.8-py3-none-any.whl.
File metadata
- Download URL: performance_analysis-0.1.8-py3-none-any.whl
- Upload date:
- Size: 9.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.14 CPython/3.8.13 Darwin/22.2.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4efa54cc0b65c791d0e2f51c47f6ba4f80858cd5c7f1b03d2caf19f3017c4e3f
|
|
| MD5 |
03ef0455a6af186ae76ecd2749e16b65
|
|
| BLAKE2b-256 |
3f2954388fdd472a3366ac98a3c3023d4d8f4fd291d538ed230b7472c612c740
|